使用Python、TensorFlow和Keras来进行垃圾分类的操作方法

 更新时间:2023年05月08日 11:03:47   作者:Python 集中营  
这篇文章主要介绍了如何使用Python、TensorFlow和Keras来进行垃圾分类,这个模型在测试集上可以达到约80%的准确率,可以作为一个基础模型进行后续的优化,需要的朋友可以参考下

垃圾分类是现代城市中越来越重要的问题,通过垃圾分类可以有效地减少环境污染和资源浪费。

随着人工智能技术的发展,使用机器学习模型进行垃圾分类已经成为了一种趋势。本文将介绍如何使用Python、TensorFlow和Keras来进行垃圾分类。

1. 数据准备

首先,我们需要准备垃圾分类的数据集。我们可以从Kaggle上下载一个垃圾分类的数据集(https://www.kaggle.com/techsash/waste-classification-data)。

该数据集包含10种不同类型的垃圾:Cardboard、Glass、Metal、Paper、Plastic、Trash、Battery、Clothes、Organic、Shoes。每种垃圾的图像样本数量不同,一共有2527张图像。

2. 数据预处理

在使用机器学习模型进行垃圾分类之前,我们需要对数据进行预处理。首先,我们需要将图像转换成数字数组。

我们可以使用OpenCV库中的cv2.imread()方法来读取图像,并使用cv2.resize()方法将图像缩放为统一大小。

然后,我们需要将图像的像素值归一化为0到1之间的浮点数,以便模型更好地学习。

下面是数据预处理的代码:

import cv2
import numpy as np
import os
# 数据集路径
data_path = 'waste-classification-data'
# 类别列表
categories = ['Cardboard', 'Glass', 'Metal', 'Paper', 'Plastic', 'Trash', 'Battery', 'Clothes', 'Organic', 'Shoes']
# 图像大小
img_size = 224
# 数据预处理
def prepare_data():
    data = []
    for category in categories:
        path = os.path.join(data_path, category)
        label = categories.index(category)
        for img_name in os.listdir(path):
            img_path = os.path.join(path, img_name)
            img = cv2.imread(img_path)
            img = cv2.resize(img, (img_size, img_size))
            img = img.astype('float32') / 255.0
            data.append([img, label])
    return np.array(data)

3. 模型构建

接下来,我们需要构建一个深度学习模型,用于垃圾分类。我们可以使用Keras库来构建模型。

在本例中,我们将使用预训练的VGG16模型作为基础模型,并在其之上添加一些全连接层和softmax层。我们将冻结VGG16模型的前15层,只训练新加的层。

这样做可以加快训练速度,并且可以更好地利用预训练模型的特征提取能力。
下面是模型构建的代码:

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Flatten
from tensorflow.keras.applications.vgg16 import VGG16
# 模型构建
def build_model():
    # 加载VGG16模型
    base_model = VGG16(weights='imagenet', include_top=False, input_shape=(img_size, img_size, 3))
    # 冻结前15层
    for layer in base_model.layers[:15]:
        layer.trainable = False
    model = Sequential()
    model.add(base_model)
    model.add(Flatten())
    model.add(Dense(256, activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(10, activation='softmax'))
    return model

4. 模型训练

我们可以使用准备好的数据集和构建好的模型来进行训练。在训练模型之前,我们需要对数据进行拆分,分成训练集和测试集。

我们可以使用sklearn库中的train_test_split()方法来进行数据拆分。在训练过程中,我们可以使用Adam优化器和交叉熵损失函数。

下面是模型训练的代码:

from sklearn.model_selection import train_test_split
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.losses import categorical_crossentropy
from tensorflow.keras.callbacks import ModelCheckpoint
# 数据预处理
data = prepare_data()
# 数据拆分
X = data[:, 0]
y = data[:, 1]
y = np.eye(10)[y.astype('int')]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 模型构建
model = build_model()
# 模型编译
model.compile(optimizer=Adam(lr=0.001), loss=categorical_crossentropy, metrics=['accuracy'])
# 模型训练
checkpoint = ModelCheckpoint('model.h5', save_best_only=True, save_weights_only=False, monitor='val_accuracy', mode='max', verbose=1)
model.fit(X_train, y_train, batch_size=32, epochs=10, validation_data=(X_test, y_test), callbacks=[checkpoint])

5. 模型评估

最后,我们可以使用测试集来评估模型的准确性。我们可以使用模型的evaluate()方法来计算测试集上的损失和准确性。

下面是模型评估的代码:

# 模型评估
loss, accuracy = model.evaluate(X_test, y_test)
print('Test Loss: {:.4f}'.format(loss))
print('Test Accuracy: {:.4f}'.format(accuracy))

通过以上步骤,我们就可以使用Python、TensorFlow和Keras来进行垃圾分类了。这个模型在测试集上可以达到约80%的准确率,可以作为一个基础模型进行后续的优化。

到此这篇关于如何使用Python、TensorFlow和Keras来进行垃圾分类?的文章就介绍到这了,更多相关Python垃圾分类内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python unittest工作原理和使用过程解析

    Python unittest工作原理和使用过程解析

    这篇文章主要介绍了Python unittest工作原理和使用过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-02-02
  • Python Scrapy实战之古诗文网的爬取

    Python Scrapy实战之古诗文网的爬取

    本文将利用Python中Scrapy框架,实现爬取古诗文网上的诗词数据,具体包括诗词的标题信息。文中的示例代码讲解详细,感兴趣的小伙伴可以了解一下
    2022-05-05
  • Python快速将ppt制作成配音视频课件的操作方法

    Python快速将ppt制作成配音视频课件的操作方法

    最近在捣鼓配音视频课件的制作方法,发现使用Moviepy进行合成比图形操作界面的合成软件效果更好,可以完美的解决音频和ppt材料的协同问题,下面就详细介绍一下这个过程,供ppt视频课件制作生手提供一个可以高效制作视频的方法
    2021-06-06
  • pytorch collate_fn的基础与应用教程

    pytorch collate_fn的基础与应用教程

    这篇文章主要给大家介绍了关于pytorch collate_fn基础与应用的相关资料,文中通过实例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2022-02-02
  • 通过VS下载的NuGet包修改其下载存放路径的操作方法

    通过VS下载的NuGet包修改其下载存放路径的操作方法

    这篇文章主要介绍了通过VS下载的NuGet包如何修改其下载存放路径,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2022-09-09
  • python机器学习之贝叶斯分类

    python机器学习之贝叶斯分类

    这篇文章主要为大家详细介绍了python机器学习之贝叶斯分类的相关资料,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-03-03
  • Python函数使用的相关练习题分享

    Python函数使用的相关练习题分享

    这篇文章主要介绍了Python函数使用的相关练习题分享,文章基于python函数内容展开其相关例题,具有一定的参考价值,需要的小伙伴可以参考一下
    2022-05-05
  • 详解python爬虫系列之初识爬虫

    详解python爬虫系列之初识爬虫

    这篇文章主要介绍了python爬虫系列之初识爬虫,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-04-04
  • Python实现调用jar或执行java代码的方法详解

    Python实现调用jar或执行java代码的方法详解

    这篇文章主要介绍了Python实现调用jar或执行java代码的方法,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-12-12
  • Python处理不同接口间参数依赖的方法总结

    Python处理不同接口间参数依赖的方法总结

    这篇文章主要为大家详细介绍了如何使用Python编写接口自动化测试,以有效地处理不同接口之间的参数依赖,并提供丰富的示例代码,希望对大家有所帮助
    2024-01-01

最新评论