python之excel文件(.xls文件)处理方式

 更新时间:2023年05月09日 09:23:55   作者:可乐大牛  
这篇文章主要介绍了python之excel文件(.xls文件)处理方式,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

python excel文件(.xls文件)如何处理

xlrd 用于读取文件,xlwt 用于写入文件,xlutils 是两个工具包的桥梁,也就是通过xlrd 读取.xls文件,然后通过xlutils 将文件内容交给xlwt处理并且保存。

xlrd

常用API:

#导入
import xlrd
# 打开文件 必须是存在的文件路径
wb = xlrd.open_workbook('路径')
# 获取文件中所有的sheet对象
objects = wb.sheets()
#获取文件中所有的sheet名称
names = wb.sheet_names()
# 按照索引获得sheet对象
ws = wb.sheet_by_index(索引值)
#按照名称获得sheet对象
ws = wb.sheet_by_name(文件名)
#获得当前sheet对象的名称
name = ws.name
#获得当前excel文件的sheet个数
n = wb.nsheets
#获得当前sheet已使用的行和列
nrows = ws.nrows
ncols = ws.ncols
# 获得当前sheet某一行或者某一列的所有元素 元素格式是:数据类型:数据值
# 数据类型:0.空,1.字符串,2.数字,3.日期,4.布尔,5.error
lst = ws.row(索引值)
lst = ws.col(索引值)
# 是ws.row(索引值)和s.col(索引值)得到允许切片版本
lst = ws.row_slice(索引值, start_colx=0, end_colx=None)
lst = ws.col_slice(索引值, start_rowx=0, end_rowx=None)
# 获得当前sheet某一行或者某一列的所有元素的值
lst = ws.row_values(索引值)
lst = ws.col_values(索引值)
# 获得当前sheet某一行或者某一列的所有元素的数据类型
lst = ws.row_types(索引值,start_colx=0, end_colx=None)
lst = ws.col_types(索引值, start_rowx=0, end_rowx=None)
# 返回当前sheet某一行已使用的长度
i = ws.row_len(索引值)
# 获取当前sheet中某个单元格的元素 元素格式是:数据类型:数据值
# 数据类型:0.空,1.字符串,2.数字,3.日期,4.布尔,5.error
n = ws.cell(行索引, 列索引)
# 获取当前sheet中某个单元格的元素的值
n = ws.cell_value(行索引, 列索引)
n = ws.cell(行索引,列索引).value
n = ws.row(行索引)[列索引].value
# 获取当前sheet中某个单元格的元素的数据类型
n = ws.cell_type(行索引, 列索引)
n = ws.cell(行索引,列索引).ctype
n = ws.row(行索引)[列索引].ctype

xlwt

# 导入
import xlwt
# 新建.xls的文件
nwb = xlwt.Workbook('utf-8')
# 添加工作表
nws = nwb.add_sheet('名称', cell_overwrite_ok=True)
# 在对应单元格上写入内容
nws.write(行索引,列索引,写入内容)
# 保存文件 注意.xls的后缀不能少
nwb.save('文件名.xls')

xlutils

# 导入
from xlutils.copy import copy
# 用xlrd导入待处理的文件
wb = xlrd.open_workbook('文件名')
#使用copy函数处理 此时的 nwb 不仅具有 xlwt 的功能, 还具有 xlrd 的功能
#也就是既可读又可写.
nwb = copy(wb)

python处理excel文件问题

最近需要频繁读写 excel 文件,想通过程序对 excel 文件进行自动化处理,发现使用 python 的 openpyxl 库进行 excel 文件读写实在太方便了,结构清晰,操作简单。

本文对 openpyxl 的使用进行总结,主要包含以下内容:

  • openpyxl 的介绍及 excel 文件结构说明
  • 工作表的读写处理
  • 行列的读写处理
  • 单元格的读写处理

openpyxl 及 excel 文件结构

openpyxl 是一个对 xlsx/xlsm/xltx/xltm 格式的 2010 excel 文档进行读写的 python 库。它官网有详细的文档介绍。在进行使用前,需先安装并引入

# 安装
pip install openpyxl
# 引入openpyxl 模块
import openpyxl

在进行 excel 操作之前,先对 excel 的文件结构做一个简单了解,以便于熟悉后续的操作。如下图:

一个 excel 文件,其内容按层次分为工作簿(文件) -> 工作表(sheet) -> 行列 -> 单元格 ,对应上图,整个 excel 文件即是一个工作簿;工作簿下可以有多个工作表(如图中的 Sheet1/test1 等等);工作表中就是对应的表格数据,分为行和列,行是用序号表示,列用大写字母表示(也可用序号);行与列的交点就是每一个存储数据的单元格。

因此,我们对 excel 表格进行读写,基本按这个层次思路来操作:读入文件,找到工作表,遍历行列,定位单元格,对单元格进行读写。因此,会涉及到工作表、行列、单元格的读写操作。

这些操作之前,需要先把文件加载进来,一个 excel 文件就是一个工作簿 (workbook),加载操作如下(示例中的 excel 文件为 text.xlsx):

# 加载excel文件
file_path = "E:/pythontest/test.xlsx"
workbook = openpyxl.load_workbook(file_path)

工作表处理

  • 工作表读取

工作表( sheet )会有多个,可以读取全部的工作表,读取单个时,可以按 sheet 名称读取,也可以按下标(下标从0开始)。

  • 全部工作表对象:workbook.worksheets
  • 全部工作表名称:workbook.sheetnames
  • 按名称(sheet_name)获取工作表:workbook[sheet_name]
  • 按下标(i从0开始)获取工作表:workbook.worksheets[i]
  • 获取正在使用的工作表:workbook.active
  • 获取工作表的属性(如工作表名称、最大行数和列数等):sheet.title、sheet.max_row、sheet.max_column

如下:

# 全部sheet对象
>>> workbook.worksheets
[<Worksheet "Sheet1">, <Worksheet "test1">, <Worksheet "test2">]
# 全部sheet名称
>>> workbook.sheetnames
['Sheet1', 'test1', 'test2']
# 按名称读取sheet
>>> workbook["Sheet1"]
<Worksheet "Sheet1">
# 按下标读取
>>> workbook.worksheets[0]
<Worksheet "Sheet1">
# 获取当前正在使用的sheet
>>> workbook.active
<Worksheet "Sheet1">
# 获取sheet的属性
>>> sheet_active.title
Sheet1
>>> sheet_active.max_row
6
>>> sheet_active.max_column
3
  • 工作表添加

若需要新增工作表,按操作流程,先添加工作表,再保存文件。创建通过create_sheet完成,创建后保存(save)文件,添加才能生效。

  • 创建工作表,若名称相同,则自动进行重命名:workbook.create_sheet(“test3”)
  • 在指定的下标创建工作表:workbook.create_sheet(“test4”,1)
  • 保存文件,若文件路径与打开的文件路径相同,则覆盖;不同,则会复制原文件并保存(相当于另存为):workbook.save(file_path)
  • 工作表修改

要修改工作表名称,直接通过设置工作表的 title 即可,修改后同样需要保存文件。

# 修改工作表名称
>>> sheet1 = workbook['test1']
>>> sheet1.title = 'test11'
# 保存文件
>>> workbook.save(file_path)
  • 工作表删除

删除工作表,需要先获取 sheet 对象,然后删除。删除有两种方式,一是使用 workbook 提供的 remove 方法,也可以直接使用 python 的del进行删除。删除操作后,同样需要保存文件:

# remove删除工作表
sheet = workbook["test-1"]
workbook.remove(sheet)
# del操作删除
del workbook["test2"]
# 保存文件
workbook.save(file_path)

行列处理

获取 sheet 对象后,后续即可进行行列操作,包括行列读取,添加,删除等。

  • 读行列

获取全部行和列,然后可以进行遍历:sheet.rows ,sheet.columns

读取部分行列:读一行sheet[1],读多行sheet[2:3],读一列sheet[‘A’],读多列sheet[‘B:C’]

# 遍历全部行
>>> for row in sheet.rows:
...    print(row)
...
(<Cell 'Sheet1'.A1>, <Cell 'Sheet1'.B1>, <Cell 'Sheet1'.C1>)
(<Cell 'Sheet1'.A2>, <Cell 'Sheet1'.B2>, <Cell 'Sheet1'.C2>)
....
# 读取部分行列
>>> sheet[1]
(<Cell 'Sheet1'.A1>, <Cell 'Sheet1'.B1>, <Cell 'Sheet1'.C1>)
>>> sheet["A:B"]
((<Cell 'Sheet1'.A1>, <Cell 'Sheet1'.A2>, <Cell 'Sheet1'.A3>, <Cell 'Sheet1'.A4>, <Cell 'Sheet1'.A5>, <Cell 'Sheet1'.A6>), (<Cell 'Sheet1'.B1>, <Cell 'Sheet1'.B2>, <Cell 'Sheet1'.B3>, <Cell 'Sheet1'.B4>, <Cell 'Sheet1'.B5>, <Cell 'Sheet1'.B6>))
  • 添加行列

添加行列,可以指定位置添加单个行列或多个行列。

  • 直接在工作表中追加行数据:sheet.append(rowdata)
  • 在指定 index(从1开始计算) 位置添加行列:sheet.insert_rows,sheet.insert_cols
# 在第4行插入1行空行
>>> sheet.insert_rows(4)
# 在第2行插入2行空行
>>> sheet.insert_rows(idx=2,amount=2)
# 添加一行数据到表
>>> row_data = ["tom", 15, "tom@test.com"]
>>> sheet.append(row_data)
# 保存修改内容
>>> workbook.save(file_path)
  • 删除行列

删除操作与插入行列操作方式一致,使用delete_rowsdelete_cols方法。

# 删除行
>>> sheet.delete_rows(2,2)
>>> workbook.save(file_path)

单元格处理

我们的数据最终是保存在每一个单元格(Cell)中,因此,最终我们操作数据其实就是单元格中的数据,单元格中,openpyxl 使用是 Cell 对象。前面在遍历行列数据时,可以看到输出<Cell ‘Sheet1’.A1>的内容,这对应的单元格对象。下面对单元格的操作进行说明。

  • 获取单元格数据值及属性值

定位获取单元格有两种方式:

  • 直接指定行列名:sheet[A1]
  • 使用 cell 函数(行列下标从1开始):sheet.cell(row=2,column=1)
# 指定行列坐标获取单元格
>>> sheet["A1"]
<Cell 'Sheet1'.A1>
# cell函数获取单元格
>>> sheet.cell(row=1, column=1)
<Cell 'Sheet1'.A1>

获取单元格对象后,可以获取数据值及其属性,包括它所在的行列数,坐标,值等。

>>> cell = sheet["A2"]
>>> cell.value
'张三'
>>> cell.coordinate
'A2'
>>> cell.column
1
>>> cell.row
2
  • 移动单元格

通过对单元格区域,可以向上、下、左、右进行移动,使用的是move_range(range,rows,cols),其中 rows 和 cols 为整数,正整数表示向下或向右,负整数为向上或向左。

# 单元格合并,使用范围坐标
sheet.merge_cells("A2:B3")
# 单元格合并,指定行列下标(下标从1开始)
sheet.merge_cells(start_row=5, start_column=3, end_row=7, end_column=4)
wb.save(file_path)
# 拆分单元格
sheet.unmerge_cells("A2:B3")
sheet.unmerge_cells(start_row=5, start_column=3, end_row=7, end_column=4)
# 保存文件
wb.save(file_path)
  • 合并拆分单元格

对于跨行和跨列,需要对单元格进行合并,使用的是merge_cells(range_string, start_row, start_column, end_row, end_column)。如果要合并的单元格都有数据,只会保留左上角的数据,其他则丢弃。合并及拆分都可以通过行列坐标(如A1)或者行列下标(如1,2)进行。

# 单元格合并,使用范围坐标
sheet.merge_cells("A2:B3")
# 单元格合并,指定行列下标(下标从1开始)
sheet.merge_cells(start_row=5, start_column=3, end_row=7, end_column=4)
wb.save(file_path)
# 拆分单元格
sheet.unmerge_cells("A2:B3")
sheet.unmerge_cells(start_row=5, start_column=3, end_row=7, end_column=4)
# 保存文件
wb.save(file_path)
  • 写入单元格

对单元格值进行修改和写入,直接对cell.value进行赋值即可。

这里需要注意的是,可以写入 excel 公式,具体公式与 excel 中用到公式一致,另外,若是写入公式,读取时获取到的 value 值也是公式,而非公式值。

# 写入值
cell.value = "张三"
# 写入公式(求平均值)
cell.value = "=AVERAGE(B2:B6)"
  • 设置单元格格式

单元格的格式包括行高,列宽,字体、边框、对齐方式、填充颜色等。这些都在 openpyxl 的 styles 模块中。

  • 行高/列宽:row_dimensions[row_num].height = xx,sheet.column_dimensions[col_name].width = xx
  • 字体( Font 对象):包括字段名称,大小、加粗、斜体、颜色等,Font(name=“微软雅黑”, size=20, bold=True, italic=True, color=“000000”)
  • 边框( Border 对象和 Side 对象):边框每一条边的格式大小/颜色Side(style=“thin”, color=“000000”),通过边构建边框对象:Border(left=side, right=side, top=side, bottom=side)
  • 对齐( Alignment 对象):垂直和水平对齐方向,是否自动换行。Alignment(horizontal=“center”, vertical=“center”, wrap_text=True)
  • 填充颜色,分为普通颜色填充和渐变颜色填充:PatternFill(fill_type=“solid”, fgColor=“FF0000”)和 GradientFill(stop=(“FF0000”, “FD1111”, “000000”))
# 设置行高和列宽
sheet.row_dimensions[1].height = 50
sheet.column_dimensions["A"].width = 20
# 设置单元格字体
cell = sheet["A1"]
current_font = cell.font
font = Font(name="微软雅黑", size=20, bold=True, italic=True, color="000000")
cell.font = font
# 设置边框(细边,黑色)
side_style = Side(style="thin", color="000000")
border = Border(left=side_style, right=side_style, top=side_style, bottom=side_style)
cell.border = border
# 居中对齐,自动换行
cell_alignment = Alignment(horizontal="center", vertical="center", wrap_text=True)
cell.alignment = cell_alignment
# 填充颜色(红色填充,和红色到黑色渐变填充)
p_fill = PatternFill(fill_type="solid", fgColor="FF0000")
g_fill = GradientFill(stop=("FF0000", "FD1111", "000000"))
cell.fill = p_fill
sheet["B1"].fill = g_fill

最后注意的是,这些修改操作最后都需要通过保存操作**(wb.save(file_path))**才能生效。

注意:

通过上面的讲解,了解如何使用 python 的 openpyxl 库对 excel 文档的处理操作,可以发现它的操作逻辑相当是清晰简单的,符合的我们使用 excel 的习惯。

处理流程基本是加载文件、定位需要处理的工作表、行、列及单元格。对它们进行读、写、修改格式等操作。

因此,如果有自动化处理 excel 文件的需求,用 openpyxl 吧,但它限制只能处理 2010 格式的 excel 文档,对于旧格式( xls )的建议都统一换为新的格式再操作,或者也可以使用 xlrd 和 xlwt 模块操作。

总结

以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • python实现人脸签到系统

    python实现人脸签到系统

    这篇文章主要为大家详细介绍了python实现人脸签到系统,带数据库存储,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2020-04-04
  • python pandas 对时间序列文件处理的实例

    python pandas 对时间序列文件处理的实例

    今天小编就为大家分享一篇python pandas 对时间序列文件处理的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-06-06
  • python重写方法和重写特殊构造方法

    python重写方法和重写特殊构造方法

    这篇文章主要介绍了python重写方法和重写特殊构造方法,对于父类的方法,只要他不符合子类模拟的实物的行为,都可以进行重写,更多相关内容需要的朋友可以参考一下
    2022-07-07
  • Python字符编码判断方法分析

    Python字符编码判断方法分析

    这篇文章主要介绍了Python字符编码判断方法,结合实例形式分析了Python字符编码的判断技巧,并给出了chardet的安装与使用方法,需要的朋友可以参考下
    2016-07-07
  • Python 栈实现的几种方式及优劣详解

    Python 栈实现的几种方式及优劣详解

    这篇文章主要为大家介绍了Python 栈实现的几种方式及优劣详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-10-10
  • Python使用PySimpleGUI和Pygame编写一个MP3播放器

    Python使用PySimpleGUI和Pygame编写一个MP3播放器

    这篇文章主要为大家详细介绍了Python如何使用PySimpleGUI和Pygame编写一个简单的MP3播放器,文中的示例代码讲解详细,感兴趣的小伙伴可以学习一下
    2023-11-11
  • 解决tensorboard多个events文件显示紊乱的问题

    解决tensorboard多个events文件显示紊乱的问题

    今天小编就为大家分享一篇解决tensorboard多个events文件显示紊乱的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-02-02
  • Python中八大图像特效算法的示例详解

    Python中八大图像特效算法的示例详解

    图像特效处理是基于图像像素数据特征,将原图像进行一定步骤的计算——例如像素作差、灰度变换、颜色通道融合等,从而达到期望的效果。本文将为大家介绍八种常用的图像特效算法,需要的可以参考一下
    2022-03-03
  • python多进程并行代码实例

    python多进程并行代码实例

    这篇文章主要介绍了python多进程并行代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-09-09
  • keras 多gpu并行运行案例

    keras 多gpu并行运行案例

    这篇文章主要介绍了keras 多gpu并行运行案例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-06-06

最新评论