python读取并绘制nc数据的保姆级教程
读取nc数据相关信息
#导入库 import netCDF4 from netCDF4 import Dataset #读取数据文件 nc_file=Dataset("/media/hsy/HSYWS/001DATA/VPD_DATA/vapor_pressure_deficit_1979.nc") #输出数据文件的两种方式 #nc_file print(nc_file)
输出结果展示:
<class 'netCDF4._netCDF4.Dataset'> root group (NETCDF4 data model, file format HDF5): Conventions: CF-1.4
created_by: R, packages ncdf4 and raster (version 3.3-13)
date: 2021-10-08 13:21:50
dimensions(sizes): Longitude(1440), Latitude(721), Time(365)
variables(dimensions): int32 crs(), float64 Longitude(Longitude), float64 Latitude(Latitude), int32 Time(Time), float32 VPD(Time, Latitude, Longitude)
groups:
#所有变量读取 print(nc_file.variables.keys()) #输出结果:dict_keys(['crs', 'Longitude', 'Latitude', 'Time', 'VPD']) #单个变量读取 nc_file['Longitude'] #print(nc_file.variables['Longitude']) """<class 'netCDF4._netCDF4.Variable'> float64 Longitude(Longitude) units: degrees_east long_name: Longitude unlimited dimensions: current shape = (1440,) filling on, default _FillValue of 9.969209968386869e+36 used""" print(nc_file.variables['crs'])
结果输出解读:
<class 'netCDF4._netCDF4.Variable'> #文件数据类型
int32 crs()
proj4: +proj=longlat +ellps=WGS84 +towgs84=0,0,0,0,0,0,0 +no_defs #proj4坐标系参数,详情请见:Quick start — PROJ 9.1.0 documentation
unlimited dimensions:
current shape = () filling on, default _FillValue of -2147483647 used
#单个变量的所有属性名称 print(nc_file.variables['VPD'].ncattrs()) #['_FillValue', 'long_name', 'grid_mapping', 'proj4', 'min', 'max'] print(nc_file.variables['VPD'].proj4)#proj4坐标系 print(nc_file.variables['VPD'].grid_mapping)#给定坐标变量与真实经纬度坐标之间的映射关系:crs print(nc_file.variables['VPD']._FillValue)#填充值或空值 #读取变量的维度 print(nc_file['VPD'].shape) #(365, 721, 1440) (#time, latitude, longitude) 格点分辨率为:天*0.25*0.25度。 #读取变量值 VPD=nc_file.variables['VPD'][:] print(VPD)#读取结果含有全部数值。 #print(nc_file['VPD'])#输出结果不完整
绘图
1、利用matplotlib绘图
import matplotlib.pyplot as plt plt.contourf(long, lat, VPD[10, :, :] ) plt.colorbar(label="VPD", orientation="horizontal") plt.show()
2、利用basemap绘图
from mpl_toolkits.basemap import Basemap import matplotlib.pyplot as plt import numpy as np lon0 = long.mean() lat0 = lat.mean() # 设置投影方式:cyl为圆柱投影、还可设置merc为mercator投影 llcrnrlat为起始lat;urcrnrlat为终止lat # m = Basemap(projection='merc', llcrnrlat=lat[0], urcrnrlat=lat[-1], \ # llcrnrlon=lon[0], urcrnrlon=lon[-1], ax=ax1) # 参数 "resolution" 用于控制地图面积边缘的精细程度,有'l'和'h'两种取值 m = Basemap(lat_0=lat0, lon_0=lon0,projection='cyl',resolution='l') # 绘制等经纬度线 纬度每隔20度画一条线,且标注经纬度 m.drawparallels(np.arange(-90., 91., 20.), labels=[1, 0, 0, 0], fontsize=10) m.drawmeridians(np.arange(-180., 181., 40.), labels=[0, 0, 0, 1], fontsize=10) m.drawcoastlines()# 绘制海岸线 lon, lat = np.meshgrid(long, lat) xi, yi = m(lon, lat) # cmap是图形颜色,还可选‘jet'、‘spring'、‘winter'、'summer'、'autumn' cs = m.contourf(xi, yi, VPD[10], cmap='summer') # pad指位置, cbar = m.colorbar(cs, location='bottom', pad="10%",format='%.1f') font1 = {'family': 'DejaVu Sans', 'weight': 'normal', 'size': 16} plt.title('VPD', font1) plt.show()
3、利用cartopy绘图
import matplotlib.pyplot as plt import cartopy.crs as ccrs proj = ccrs.PlateCarree() fig = plt.figure(figsize=(15, 7)) fig, ax = plt.subplots(1, 1, subplot_kw={'projection': proj}) # 或者 ax = fig.add_subplot(111,proj=proj) lon1 = nc_file.variables['Longitude'][:] lat1 = nc_file.variables['Latitude'][:] print(lon1.shape, lat1.shape) ax.contourf(lon, lat, VPD[100]) ax.coastlines(resolution = '10m') #添加格网 from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER # 设置 gridlines 和 ticklabels gl = ax.gridlines(draw_labels = True, linewidth = 1.5) gl.xlabels_top = False gl.xlines = True gl.xformatter = LONGITUDE_FORMATTER gl.ylabels_right = False gl.ylines = True gl.yformatter = LATITUDE_FORMATTER plt.show()
总结
到此这篇关于python读取并绘制nc数据的保姆级教程的文章就介绍到这了,更多相关python读取绘制nc数据内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
相关文章
Python提取PDF发票信息保存Excel文件并制作EXE程序的全过程
之前零散的用过一点python做数据处理,这次又遇到一个数据处理的小功能,下面这篇文章主要给大家介绍了关于Python提取PDF发票信息保存Excel文件并制作EXE程序的相关资料,文中通过实例代码介绍的非常详细,需要的朋友可以参考下2022-11-11
最新评论