Python中reset_index()函数的使用

 更新时间:2023年05月16日 11:00:15   作者:小小白2333  
本文主要介绍了Python中reset_index()函数的使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

resert_index()函数

Series.reset_index(level=None, drop=False, name=NoDefault.no_default, inplace=False)
  • drop: 重新设置索引后是否将原索引作为新的一列并入DataFrame,默认为False
  • inplace: 是否在原DataFrame上改动,默认为False
  • level: 如果索引(index)有多个列,仅从索引中删除level指定的列,默认删除所有列
  • col_level: 如果列名(columns)有多个级别,决定被删除的索引将插入哪个级别,默认插入第一级
  • col_fill: 如果列名(columns)有多个级别,决定其他级别如何命名
  •  作用: 用索引重置生成一个新的DataFrame或Series。当索引需要被视为列,或者索引没有意义,需要在另一个操作之前重置为默认值时。在机器学习中常常会对索引进行一定的处理,用于是否保留原有的索引。

返回:DataFrame or None。具有新索引的数据帧,如果inplace=True,则无索引。

例子:

import pandas as pd
df = pd.DataFrame(data={'A':[1,2,3],'B':[4,5,6],'C':[7,8,9]})
print(df)
print('\n')
print(df.reset_index()) # 会将原来的索引index作为新的一列
print('\n')
print(df.reset_index(drop=True)) # 使用drop参数设置去掉原索引
print('\n')

结果:

   A  B  C
0  1  4  7
1  2  5  8
2  3  6  9
 
   index  A  B  C
0      0  1  4  7
1      1  2  5  8
2      2  3  6  9
  
   A  B  C
0  1  4  7
1  2  5  8
2  3  6  9

读懂代码中resert_index():

def concat_detail(x):
    return pd.Series({'备注':';'.join(x['detail'])})
df2=df1[['cwhxzqh','detail']].groupby('cwhxzqh').apply(concat_detail).reset_index()
df2

将df1中原来的索引作为一个列,列名为 index

补:各参数的用法

示例

参数drop

False表示重新设置索引后将原索引作为新的一列并入DataFrame,True表示删除原索引

import pandas as pd
import numpy as np
df = pd.DataFrame([('bird', 389.0), ('bird', 24.0), ('mammal', 80.5), ('mammal', np.nan)],
                  index=['falcon', 'parrot', 'lion', 'monkey'], columns=('class', 'max_speed'))
print(df)
print('\n')
df1 = df.reset_index()
print(df1)
print('\n')
df2 = df.reset_index(drop=True)
print(df2)

输出:

参数drop的示例

参数inplace

True表示在原DataFrame上修改,False将修改后的DataFrame作为新的对象返回

import pandas as pd
import numpy as np
df = pd.DataFrame([('bird', 389.0), ('bird', 24.0), ('mammal', 80.5), ('mammal', np.nan)],
                  index=['falcon', 'parrot', 'lion', 'monkey'], columns=('class', 'max_speed'))
print(df)
print('\n')
df1 = df.reset_index()
print(df1)
print('\n')
df2 = df.reset_index(inplace=True)
print(df2)
print('\n')
print(df)

输出:

参数inplace的示例

参数level

如果索引有多个列,仅从索引中删除由level指定的列,默认删除所有列。输入整数时表示将index的names中下标为level的索引删除;输入为字符串时表示将名字为level的索引删除

import pandas as pd
import numpy as np
index = pd.MultiIndex.from_tuples([('bird', 'falcon'), ('bird', 'parrot'), ('mammal', 'lion'), ('mammal', 'monkey')], names=['class', 'name'])
columns = pd.MultiIndex.from_tuples([('speed', 'max'), ('species', 'type')])
df = pd.DataFrame([(389.0, 'fly'), ( 24.0, 'fly'), ( 80.5, 'run'), (np.nan, 'jump')], index=index, columns=columns)
print(df)
print('\n')
df0 = df.reset_index()
print(df0)
print('\n')
df1 = df.reset_index(level=1)
print(df1)
print('\n')
df2 = df.reset_index(level='name')
print(df2)

输出:

参数level的示例1

参数level的示例2

参数col_level

如果列名(columns)有多个级别,决定被删除的索引将插入哪个级别,默认插入第一级(col_level=0)

import pandas as pd
import numpy as np
index = pd.MultiIndex.from_tuples([('bird', 'falcon'), ('bird', 'parrot'), ('mammal', 'lion'), ('mammal', 'monkey')], names=['class', 'name'])
columns = pd.MultiIndex.from_tuples([('speed', 'max'), ('species', 'type')])
df = pd.DataFrame([(389.0, 'fly'), ( 24.0, 'fly'), ( 80.5, 'run'), (np.nan, 'jump')], index=index, columns=columns)
print(df)
print('\n')
df1 = df.reset_index(level=0, col_level=0)
print(df1)
print('\n')
df2 = df.reset_index(level=0, col_level=1)
print(df2)
print('\n')

输出:

参数col_level的示例

参数col_fill

重置索引时被删除的索引只能插入一个级别,如果列名(columns)有多个级别,那么这个列的列名的其他级别如何命名就由col_fill决定,默认不做填充,如果传入None则用被删除的索引的名字填充

import pandas as pd
import numpy as np
index = pd.MultiIndex.from_tuples([('bird', 'falcon'), ('bird', 'parrot'), ('mammal', 'lion'), ('mammal', 'monkey')], names=['class', 'name'])
columns = pd.MultiIndex.from_tuples([('speed', 'max'), ('species', 'type')])
df = pd.DataFrame([(389.0, 'fly'), ( 24.0, 'fly'), ( 80.5, 'run'), (np.nan, 'jump')], index=index, columns=columns)
print(df)
print('\n')
df0 = df.reset_index(level=0, col_level=0)
print(df0)
print('\n')
df1 = df.reset_index(level=0, col_level=0, col_fill=None)
print(df1)
print('\n')
df2 = df.reset_index(level=0, col_level=1, col_fill='species')
print(df2)
print('\n')
df3 = df.reset_index(level=0, col_level=0, col_fill='genus')
print(df3)
print('\n')

输出:
参数col_fill的示例1

参数col_fill的示例2

到此这篇关于Python中reset_index()函数的使用的文章就介绍到这了,更多相关Python reset_index()内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • python opencv 直方图反向投影的方法

    python opencv 直方图反向投影的方法

    这篇文章主要介绍了python opencv 直方图反向投影的方法,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2018-02-02
  • 谈谈python中GUI的选择

    谈谈python中GUI的选择

    本篇文章给大家详细分析了一个在python编程中GUI的选择相关知识点,如果大家对此有兴趣可以阅读参考下。
    2018-03-03
  • python中常用检测字符串相关函数汇总

    python中常用检测字符串相关函数汇总

    这篇文章主要介绍了python中常用检测字符串相关函数,实例汇总了Python针对字符串数字、字母、大小写等常用检测函数,非常具有实用价值,需要的朋友可以参考下
    2015-04-04
  • Python进阶教程之创建本地PyPI仓库

    Python进阶教程之创建本地PyPI仓库

    pypi是一个python包的仓库,里面有很多别人写好的python库,你可以通过easy_install或者pip进行安装,下面这篇文章主要给大家介绍了关于Python进阶教程之创建本地PyPI仓库的相关资料,需要的朋友可以参考下
    2021-10-10
  • Python3 pickle模块的使用方法详细介绍

    Python3 pickle模块的使用方法详细介绍

    pickle提供了一个简单的持久化功能。可以将对象以文件的形式存放在磁盘上,pickle序列化后的数据,可读性差,人一般无法识别,本文详细介绍了pickle模块的使用方法
    2021-10-10
  • python中lxml.etree 和 ElementTree 的区别解析

    python中lxml.etree 和 ElementTree 的区别解析

    lxml.etree 提供了更多的功能,例如 XPath、XSLT、Relax NG、 和 XML 模式支持,etree 对 Python unicode 字符串的想法与 ElementTree 不同,本文给大家介绍python中lxml.etree 和 ElementTree 的区别,感兴趣的朋友一起看看吧
    2024-01-01
  • python 实现线程之间的通信示例

    python 实现线程之间的通信示例

    这篇文章主要介绍了python 实现线程之间的通信示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-02-02
  • python 图像平移和旋转的实例

    python 图像平移和旋转的实例

    今天小编就为大家分享一篇python 图像平移和旋转的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-01-01
  • python开发实例之Python的Twisted框架中Deferred对象的详细用法与实例

    python开发实例之Python的Twisted框架中Deferred对象的详细用法与实例

    这篇文章主要介绍了python开发实例之Python的Twisted框架中Deferred对象的详细用法与实例,需要的朋友可以参考下
    2020-03-03
  • Python全局变量global关键字详解

    Python全局变量global关键字详解

    这篇文章主要介绍了Python全局变量global关键字详解,需要的朋友可以参考下
    2021-04-04

最新评论