Python高效编程技巧

 更新时间:2013年01月07日 17:16:41   作者:  
我已经使用Python编程有多年了,即使今天我仍然惊奇于这种语言所能让代码表现出的整洁和对DRY编程原则的适用。这些年来的经历让我学到了很多的小技巧和知识,大多数是通过阅读很流行的开源软件,如Django, Flask, Requests中获得的
下面我挑选出的这几个技巧常常会被人们忽略,但它们在日常编程中能真正的给我们带来不少帮助。

1. 字典推导(Dictionary comprehensions)和集合推导(Set comprehensions)
大多数的Python程序员都知道且使用过列表推导(list comprehensions)。如果你对list comprehensions概念不是很熟悉——一个list comprehension就是一个更简短、简洁的创建一个list的方法。

>>> some_list = [1, 2, 3, 4, 5]
>>> another_list = [ x + 1 for x in some_list ]
>>> another_list
[2, 3, 4, 5, 6]

自从python 3.1 (甚至是Python 2.7)起,我们可以用同样的语法来创建集合和字典表:
复制代码 代码如下:

>>> # Set Comprehensions
>>> some_list = [1, 2, 3, 4, 5, 2, 5, 1, 4, 8]
>>> even_set = { x for x in some_list if x % 2 == 0 }
>>> even_set
set([8, 2, 4])
>>> # Dict Comprehensions
>>> d = { x: x % 2 == 0 for x in range(1, 11) }
>>> d
{1: False, 2: True, 3: False, 4: True, 5: False, 6: True, 7: False, 8: True, 9: False, 10: True}

在第一个例子里,我们以some_list为基础,创建了一个具有不重复元素的集合,而且集合里只包含偶数。而在字典表的例子里,我们创建了一个key是不重复的1到10之间的整数,value是布尔型,用来指示key是否是偶数。
这里另外一个值得注意的事情是集合的字面量表示法。我们可以简单的用这种方法创建一个集合:
复制代码 代码如下:

>>> my_set = {1, 2, 1, 2, 3, 4}
>>> my_set
set([1, 2, 3, 4])

而不需要使用内置函数set()。

2. 计数时使用Counter计数对象。
这听起来显而易见,但经常被人忘记。对于大多数程序员来说,数一个东西是一项很常见的任务,而且在大多数情况下并不是很有挑战性的事情——这里有几种方法能更简单的完成这种任务。
Python的collections类库里有个内置的dict类的子类,是专门来干这种事情的:
复制代码 代码如下:

>>> from collections import Counter
>>> c = Counter('hello world')
>>> c
Counter({'l': 3, 'o': 2, ' ': 1, 'e': 1, 'd': 1, 'h': 1, 'r': 1, 'w': 1})
>>> c.most_common(2)
[('l', 3), ('o', 2)]

3. 漂亮的打印出JSON
JSON是一种非常好的数据序列化的形式,被如今的各种API和web service大量的使用。使用python内置的json处理,可以使JSON串具有一定的可读性,但当遇到大型数据时,它表现成一个很长的、连续的一行时,人的肉眼就很难观看了。
为了能让JSON数据表现的更友好,我们可以使用indent参数来输出漂亮的JSON。当在控制台交互式编程或做日志时,这尤其有用:
复制代码 代码如下:

>>> import json
>>> print(json.dumps(data)) # No indention
{"status": "OK", "count": 2, "results": [{"age": 27, "name": "Oz", "lactose_intolerant": true}, {"age": 29, "name": "Joe", "lactose_intolerant": false}]}
>>> print(json.dumps(data, indent=2)) # With indention
{
"status": "OK",
"count": 2,
"results": [
{
"age": 27,
"name": "Oz",
"lactose_intolerant": true
},
{
"age": 29,
"name": "Joe",
"lactose_intolerant": false
}
]
}

同样,使用内置的pprint模块,也可以让其它任何东西打印输出的更漂亮。

4. 创建一次性的、快速的小型web服务
有时候,我们需要在两台机器或服务之间做一些简便的、很基础的RPC之类的交互。我们希望用一种简单的方式使用B程序调用A程序里的一个方法——有时是在另一台机器上。仅内部使用。
我并不鼓励将这里介绍的方法用在非内部的、一次性的编程中。我们可以使用一种叫做XML-RPC的协议 (相对应的是这个Python库),来做这种事情。
下面是一个使用SimpleXMLRPCServer模块建立一个快速的小的文件读取服务器的例子:
复制代码 代码如下:

from SimpleXMLRPCServer import SimpleXMLRPCServer

def file_reader(file_name):
with open(file_name, 'r') as f:
return f.read()

server = SimpleXMLRPCServer(('localhost', 8000))
server.register_introspection_functions()
server.register_function(file_reader)
server.serve_forever()

客户端:
复制代码 代码如下:

import xmlrpclib
proxy = xmlrpclib.ServerProxy('http://localhost:8000/')
proxy.file_reader('/tmp/secret.txt')


我们这样就得到了一个远程文件读取工具,没有外部的依赖,只有几句代码(当然,没有任何安全措施,所以只可以在家里这样做)。

5. Python神奇的开源社区
这里我提到的几个东西都是Python标准库里的,如果你安装了Python,你就已经可以这样使用了。而对于很多其它类型的任务,这里有大量的社区维护的第三方库可供你使用。
下面这个清单是我认为的好用且健壮的开源库的必备条件:

好的开源库必须…

•包含一个很清楚的许可声明,能适用于你的使用场景。
•开发和维护工作很活跃(或,你能参与开发维护它。)
•能够简单的使用pip安装或反复部署。
•有测试套件,具有足够的测试覆盖率。
如果你发现一个好的程序库,符合你的要求,不要不好意思————大部分的开源项目都欢迎捐赠代码和欢迎提供帮助——即使你不是一个Python高手。

原文: http://www.aqee.net/improving-your-python-productivity/

相关文章

  • Django 导出 Excel 代码的实例详解

    Django 导出 Excel 代码的实例详解

    本篇文章主要介绍了Django 导出 Excel 代码的实例详解,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-08-08
  • Django中使用ModelForm生成HTML标签的方法步骤

    Django中使用ModelForm生成HTML标签的方法步骤

    在 Django 中,使用 ModelForm 来生成 HTML 表单标签是一种常见且高效的做法,本文主要介绍了Django中使用ModelForm生成HTML标签的方法步骤,感兴趣的可以了解一下
    2024-01-01
  • Python 中面向接口编程详情

    Python 中面向接口编程详情

    这篇文章主要介绍了Python 中面向接口编程详情,Python 中的接口与大多数其它语言的处理方式不同,它们的设计复杂性也不同,关于Python 接口编程的介绍,需要的小伙伴可以参考下面文章内容
    2022-05-05
  • Python Merge函数原理及用法解析

    Python Merge函数原理及用法解析

    这篇文章主要介绍了Python Merge函数原理及用法解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-09-09
  • python pygame模块编写飞机大战

    python pygame模块编写飞机大战

    这篇文章主要为大家详细介绍了python pygame模块编写飞机大战,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-11-11
  • Python for Informatics 第11章之正则表达式(四)

    Python for Informatics 第11章之正则表达式(四)

    这篇文章主要介绍了Python for Informatics 第11章之正则表达式(四) 的相关资料,需要的朋友可以参考下
    2016-04-04
  • Python中max函数用法实例分析

    Python中max函数用法实例分析

    这篇文章主要介绍了Python中max函数用法,实例分析了Python中max函数的功能与使用技巧,具有一定参考借鉴价值,需要的朋友可以参考下
    2015-07-07
  • python3解析库BeautifulSoup4的安装配置与基本用法

    python3解析库BeautifulSoup4的安装配置与基本用法

    简单来说,BeautifulSoup就是Python的一个HTML或XML的解析库,我们可以用它来方便地从网页中提取数据,下面这篇文章主要给大家介绍了关于python3解析库BeautifulSoup4的安装配置与基本用法的相关资料,需要的朋友可以参考下
    2018-06-06
  • 利用nohup来开启python文件的方法

    利用nohup来开启python文件的方法

    今天小编就为大家分享一篇利用nohup来开启python文件的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-01-01
  • Python与Matlab实现快速傅里叶变化的区别

    Python与Matlab实现快速傅里叶变化的区别

    信号处理免不了要求频率、画频谱图,但Matlab的fft()函数与Python的numpy.fft.fft()与scipy.fftpack.fft()函数得到的是fft变化后的双边复数值,离画频谱图还有几句代码的距离。基本原理不介绍了,下面直接懒人投喂,给出Matlab与Python的两个函数,直接调用即可画频谱图
    2021-10-10

最新评论