全排列算法的非递归实现与递归实现的方法(C++)

 更新时间:2013年05月24日 15:48:10   作者:  
本篇文章是对全排列算法的非递归实现与递归实现的方法进行了详细的分析介绍,需要的朋友参考下
(一)非递归全排列算法
基本思想是:
    1.找到所有排列中最小的一个排列P.
    2.找到刚刚好比P大比其它都小的排列Q,
    3.循环执行第二步,直到找到一个最大的排列,算法结束.
下面用数学的方法描述:
给定已知序列 P =  A1A2A3An ( Ai!=Aj , (1<=i<=n  , 1<=j<=n, i != j  ) )
找到P的一个最小排列Pmin = P1P2P3Pn  有  Pi > P(i-1) (1 < i <= n)
从Pmin开始,总是目前得到的最大的排列为输入,得到下一个排列.
方法为:
1.从低位到高位(从后向前),找出“不符合趋势”的数字。即找到一个Pi,使Pi < P(i+1)。
  若找不到这样的pi,说明我们已经找到最后一个全排列,可以返回了。
2.在 P(i+1)P(i+2)Pn 中,找到一个Pj,便得 Pj"刚刚好大于"Pi.
  ("刚刚好大于"的意思是:在 P(i+1)P(i+2)Pn 中所有大于Pi的元素构成的集合中最小的元素.)
3.交换 Pi , Pj 的位置.注意:此处不改变i和j的值,改变的是Pi和Pj.
4.交换后, P1P2P3Pn  并不是准确的后一个排列。因为根据第1步的查找,我们有P(i+1) > P(i+2) > . > Pn
  即使进行了Pi和Pj的交换,这仍然是这一部分最大的一个排列。将此排列逆序倒置(变成最小的排列)即为所求的下一个排列.
5.重复步骤1-4,直到步骤1中找不到“不符合趋势”的数字.
复制代码 代码如下:

//交换数组a中下标为i和j的两个元素的值
void swap(int* a,int i,int j)
{
    a[i]^=a[j];
    a[j]^=a[i];
    a[i]^=a[j];
}

//将数组a中的下标i到下标j之间的所有元素逆序倒置
void reverse(int a[],int i,int j)
{
    for(;i<j;++i,--j)
    {
         swap(a,i,j);
    }
}

void print(int a[],int length)
{
    for(int i=0;i<length;++i)
         cout<<a[i]<<" ";
    cout<<endl;
}

//求取全排列,打印结果
void combination(int a[],int length)
{
    if(length<2) return;

    bool end=false;
    while(true)
    {
         print(a,length);

         int i,j;
         //找到不符合趋势的元素的下标i
         for(i=length-2;i>=0;--i)
         {
             if(a[i]<a[i+1]) break;
             else if(i==0) return;
         }

         for(j=length-1;j>i;--j)
         {
             if(a[j]>a[i]) break;
         }

         swap(a,i,j);
         reverse(a,i+1,length-1);
    }
}

(二)递归算法
令E= {e1 , ..., en }表示n 个元素的集合,我们的目标是生成该集合的所有排列方式。令Ei 为E中移去元素i 以后所获得的集合,perm (X) 表示集合X 中元素的排列方式,ei . p e r m(X)表示在perm (X) 中的每个排列方式的前面均加上ei 以后所得到的排列方式。例如,如果E= {a, b, c},那么E1= {b, c},perm (E1 ) = ( b c, c b),e1 .perm (E1) = (a b c, a c b)。对于递归的基本部分,采用n = 1。当只有一个元素时,只可能产生一种排列方式,所以perm (E) = ( e),其中e 是E 中的唯一元素。当n > 1时,perm (E) = e1 .perm (E1 ) +e2 .p e r m(E2 ) +e3.perm (E3) + ⋯ +en .perm (En )。这种递归定义形式是采用n 个perm (X) 来定义perm (E), 其中每个X 包含n- 1个元素。至此,一个完整的递归定义所需要的基本部分和递归部分都已完成。
当n= 3并且E=(a, b, c)时,按照前面的递归定义可得perm (E) =a.perm ( {b, c} ) +b.perm ( {a,c} ) +c.perm ( {a, b} )。同样,按照递归定义有perm ( {b, c} ) =b.perm ( {c} ) +c.perm ( {b}), 所以a.perm ( {b, c} ) = ab.perm ( {c} ) + ac.perm ( {b}) = a b . c + ac.b = (a b c, a c b)。同理可得b.perm ( {a, c}) = ba.perm ( {c}) + bc.perm ( {a}) = b a . c + b c . a = (b a c, b c a),c.perm ( {a, b}) =ca.perm ( {b}) + cb.perm ( {a}) = c a . b + c b . a = (c a b, c b a)。所以perm (E) = (a b c, a c b, b a c, b c a,c a b, c b a)。注意a.perm ( {b, c} )实际上包含两个排列方式:abc 和a c b,a 是它们的前缀,perm ( {b, c} )是它们的后缀。同样地,ac.perm ( {b}) 表示前缀为a c、后缀为perm ( {b}) 的排列方式。程序1 - 1 0把上述perm (E) 的递归定义转变成一个C++ 函数,这段代码输出所有前缀为l i s t [ 0:k-1], 后缀为l i s t [ k:m] 的排列方式。调用Perm(list, 0, n-1) 将得到list[0: n-1] 的所有n! 个排列方式,在该调用中,k=0, m= n - 1,因此排列方式的前缀为空,后缀为list[0: n-1] 产生的所有排列方式。当k =m 时,仅有一个后缀l i s t [ m ],因此list[0: m] 即是所要产生的输出。当k<m时,先用list[k] 与l i s t [ k:m] 中的每个元素进行交换,然后产生list[k+1: m] 的所有排列方式,并用它作为list[0: k] 的后缀。S w a p是一个inline 函数,它被用来交换两个变量的值
复制代码 代码如下:

template <class T>
inline void Swap(T& a, T& b)
{
    // 交换a和b
    T temp = a; a = b; b = temp;
}

template<class T>
void Perm(T list[], int k, int m)
{
    //生成list [k:m ]的所有排列方式
    int i;
    if (k == m)
    {
         //输出一个排列方式
         for (i = 0; i <= m; i++)
             cout << list [i];
         cout << endl;
    }
    else // list[k:m ]有多个排列方式
    {
         // 递归地产生这些排列方式
         for (i=k; i <= m; i++)
         {
             Swap (list[k], list[i]);
             Perm (list, k+1, m);
             Swap (list [k], list [i]);
         }
    }
}

相关文章

  • C++11实现简易定时器的示例代码

    C++11实现简易定时器的示例代码

    这篇文章主要介绍了C++11实现简易定时器的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-04-04
  • c++动态内存管理详解(new/delete)

    c++动态内存管理详解(new/delete)

    作为一名编程初学者,通常学习中,发生内存错误是件非常麻烦的事情,下面这篇文章主要给大家介绍了关于c++动态内存管理new/delete的相关资料,文中通过实例代码介绍的非常详细,需要的朋友可以参考下
    2022-03-03
  • Qt数据库应用之实现通用数据库清理

    Qt数据库应用之实现通用数据库清理

    项目如果需要存储很多日志记录比如运行日志,时间长了记录数量非常多,数据库体积不断增大,对应数据库表的增删改查的效率不断降低,因此需要将早期的数据清理。本文将详细介绍一下通用数据库清理的实现,需要的可以参考一下
    2022-02-02
  • C++实现屏幕截图

    C++实现屏幕截图

    这篇文章主要为大家详细介绍了C++实现屏幕截图功能,截图自动保存为png格式文件,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-05-05
  • C++ float、double判断是否等于0问题

    C++ float、double判断是否等于0问题

    这篇文章主要介绍了C++ float、double判断是否等于0问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-08-08
  • C语言实现计算圆周长以及面积

    C语言实现计算圆周长以及面积

    这篇文章主要介绍了C语言实现计算圆周长以及面积方式,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-11-11
  • C语言利用结构体数组实现学生成绩管理系统

    C语言利用结构体数组实现学生成绩管理系统

    这篇文章主要为大家详细介绍了C语言利用结构体数组实现学生成绩管理系统,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-01-01
  • 利用C语言实现猜数字小游戏

    利用C语言实现猜数字小游戏

    这篇文章主要为大家详细介绍了利用C语言实现猜数字小游戏,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-08-08
  • 基于C语言实现点菜系统

    基于C语言实现点菜系统

    这篇文章主要为大家详细介绍了基于C语言实现点菜系统,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2019-11-11
  • 一起来看看C语言的预处理注意点

    一起来看看C语言的预处理注意点

    这篇文章主要为大家详细介绍了C语言的预处理,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助
    2022-03-03

最新评论