浅析内存对齐与ANSI C中struct型数据的内存布局

 更新时间:2013年09月09日 10:06:14   作者:  
当在C中定义了一个结构类型时,它的大小是否等于各字段(field)大小之和?编译器将如何在内存中放置这些字段?ANSI C对结构体的内存布局有什么要求?而我们的程序又能否依赖这种布局

这些问题或许对不少朋友来说还有点模糊,那么本文就试着探究它们背后的秘密。

首先,至少有一点可以肯定,那就是ANSI C保证结构体中各字段在内存中出现的位置是随它们的声明顺序依次递增的,并且第一个字段的首地址等于整个结构体实例的首地址。比如有这样一个结构体:

复制代码 代码如下:

  struct vector{int x,y,z;} s;
  int *p,*q,*r;
  struct vector *ps;
  p = &s.x;
  q = &s.y;
  r = &s.z;
  ps = &s;

  assert(p < q);
  assert(p < r);
  assert(q < r);
  assert((int*)ps == p);
  // 上述断言一定不会失败


这时,有朋友可能会问:"标准是否规定相邻字段在内存中也相邻?"。 唔,对不起,ANSI C没有做出保证,你的程序在任何时候都不应该依赖这个假设。那这是否意味着我们永远无法勾勒出一幅更清晰更精确的结构体内存布局图?哦,当然不是。不过先让我们从这个问题中暂时抽身,关注一下另一个重要问题————内存对齐。

许多实际的计算机系统对基本类型数据在内存中存放的位置有限制,它们会要求这些数据的首地址的值是某个数k(通常它为4或8)的倍数,这就是所谓的内存对齐,而这个k则被称为该数据类型的对齐模数(alignment modulus)。当一种类型S的对齐模数与另一种类型T的对齐模数的比值是大于1的整数,我们就称类型S的对齐要求比T强(严格),而称T比S弱(宽松)。这种强制的要求一来简化了处理器与内存之间传输系统的设计,二来可以提升读取数据的速度。比如这么一种处理器,它每次读写内存的时候都从某个8倍数的地址开始,一次读出或写入8个字节的数据,假如软件能保证double类型的数据都从8倍数地址开始,那么读或写一个double类型数据就只需要一次内存操作。否则,我们就可能需要两次内存操作才能完成这个动作,因为数据或许恰好横跨在两个符合对齐要求的8字节内存块上。某些处理器在数据不满足对齐要求的情况下可能会出错,但是Intel的IA32架构的处理器则不管数据是否对齐都能正确工作。不过Intel奉劝大家,如果想提升性能,那么所有的程序数据都应该尽可能地对齐。Win32平台下的微软C编译器(cl.exe for 80x86)在默认情况下采用如下的对齐规则: 任何基本数据类型T的对齐模数就是T的大小,即sizeof(T)。比如对于double类型(8字节),就要求该类型数据的地址总是8的倍数,而char类型数据(1字节)则可以从任何一个地址开始。Linux下的GCC奉行的是另外一套规则(在资料中查得,并未验证,如错误请指正):任何2字节大小(包括单字节吗?)的数据类型(比如short)的对齐模数是2,而其它所有超过2字节的数据类型(比如long,double)都以4为对齐模数。

现在回到我们关心的struct上来。ANSI C规定一种结构类型的大小是它所有字段的大小以及字段之间或字段尾部的填充区大小之和。嗯?填充区?对,这就是为了使结构体字段满足内存对齐要求而额外分配给结构体的空间。那么结构体本身有什么对齐要求吗?有的,ANSI C标准规定结构体类型的对齐要求不能比它所有字段中要求最严格的那个宽松,可以更严格(但此非强制要求,VC7.1就仅仅是让它们一样严格)。我们来看一个例子(以下所有试验的环境是Intel Celeron 2.4G + WIN2000 PRO + vc7.1,内存对齐编译选项是"默认",即不指定/Zp与/pack选项):

复制代码 代码如下:

  typedef struct ms1
  {
     char a;
     int b;
  } MS1;

假设MS1按如下方式内存布局(本文所有示意图中的内存地址从左至右递增):
       _____________________________

       |   a   |        b          |

       +---------------------------+
Bytes:    1             4
因为MS1中有最强对齐要求的是b字段(int),所以根据编译器的对齐规则以及ANSI C标准,MS1对象的首地址一定是4(int类型的对齐模数)的倍数。那么上述内存布局中的b字段能满足int类型的对齐要求吗?嗯,当然不能。如果你是编译器,你会如何巧妙安排来满足CPU的癖好呢?呵呵,经过1毫秒的艰苦思考,你一定得出了如下的方案:
       _______________________________________
       |       |///////////|                 |
       |   a   |//padding//|       b         |
       |       |///////////|                 |
       +-------------------------------------+
Bytes:    1         3             4
这个方案在a与b之间多分配了3个填充(padding)字节,这样当整个struct对象首地址满足4字节的对齐要求时,b字段也一定能满足int型的4字节对齐规定。那么sizeof(MS1)显然就应该是8,而b字段相对于结构体首地址的偏移就是4。非常好理解,对吗?现在我们把MS1中的字段交换一下顺序:

复制代码 代码如下:

  typedef struct ms2
  {
     int a;
     char b;
  } MS2;

或许你认为MS2比MS1的情况要简单,它的布局应该就是

       _______________________

       |     a       |   b   |

       +---------------------+
Bytes:      4           1
因为MS2对象同样要满足4字节对齐规定,而此时a的地址与结构体的首地址相等,所以它一定也是4字节对齐。嗯,分析得有道理,可是却不全面。让我们来考虑一下定义一个MS2类型的数组会出现什么问题。C标准保证,任何类型(包括自定义结构类型)的数组所占空间的大小一定等于一个单独的该类型数据的大小乘以数组元素的个数。换句话说,数组各元素之间不会有空隙。按照上面的方案,一个MS2数组array的布局就是:

|<-    array[1]     ->|<-    array[2]     ->|<- array[3] .....
__________________________________________________________

|     a       |   b   |      a       |   b  |.............

+----------------------------------------------------------
Bytes:  4         1          4           1

当数组首地址是4字节对齐时,array[1].a也是4字节对齐,可是array[2].a呢?array[3].a ....呢?可见这种方案在定义结构体数组时无法让数组中所有元素的字段都满足对齐规定,必须修改成如下形式:
       ___________________________________
       |             |       |///////////|
       |     a       |   b   |//padding//|
       |             |       |///////////|
       +---------------------------------+
Bytes:      4           1         3

现在无论是定义一个单独的MS2变量还是MS2数组,均能保证所有元素的所有字段都满足对齐规定。那么sizeof(MS2)仍然是8,而a的偏移为0,b的偏移是4。

好的,现在你已经掌握了结构体内存布局的基本准则,尝试分析一个稍微复杂点的类型吧。

复制代码 代码如下:

  typedef struct ms3
  {
     char a;
     short b;
     double c;
  } MS3;

我想你一定能得出如下正确的布局图:

        padding 

      _____v_________________________________
      |   |/|     |/////////|               |
      | a |/|  b  |/padding/|       c       |
      |   |/|     |/////////|               |
      +-------------------------------------+
Bytes:  1  1   2       4            8

sizeof(short)等于2,b字段应从偶数地址开始,所以a的后面填充一个字节,而sizeof(double)等于8,c字段要从8倍数地址开始,前面的a、b字段加上填充字节已经有4 bytes,所以b后面再填充4个字节就可以保证c字段的对齐要求了。sizeof(MS3)等于16,b的偏移是2,c的偏移是8。接着看看结构体中字段还是结构类型的情况:
复制代码 代码如下:

  typedef struct ms4
  {
     char a;
     MS3 b;
  } MS4;

MS3中内存要求最严格的字段是c,那么MS3类型数据的对齐模数就与double的一致(为8),a字段后面应填充7个字节,因此MS4的布局应该是:
       _______________________________________
       |       |///////////|                 |
       |   a   |//padding//|       b         |
       |       |///////////|                 |
       +-------------------------------------+
 Bytes:    1         7             16

显然,sizeof(MS4)等于24,b的偏移等于8。

在实际开发中,我们可以通过指定/Zp编译选项来更改编译器的对齐规则。比如指定/Zpn(VC7.1中n可以是1、2、4、8、16)就是告诉编译器最大对齐模数是n。在这种情况下,所有小于等于n字节的基本数据类型的对齐规则与默认的一样,但是大于n个字节的数据类型的对齐模数被限制为n。事实上,VC7.1的默认对齐选项就相当于/Zp8。仔细看看MSDN对这个选项的描述,会发现它郑重告诫了程序员不要在MIPS和Alpha平台上用/Zp1和/Zp2选项,也不要在16位平台上指定/Zp4和/Zp8(想想为什么?)。改变编译器的对齐选项,对照程序运行结果重新分析上面4种结构体的内存布局将是一个很好的复习。

到了这里,我们可以回答本文提出的最后一个问题了。结构体的内存布局依赖于CPU、操作系统、编译器及编译时的对齐选项,而你的程序可能需要运行在多种平台上,你的源代码可能要被不同的人用不同的编译器编译(试想你为别人提供一个开放源码的库),那么除非绝对必需,否则你的程序永远也不要依赖这些诡异的内存布局。顺便说一下,如果一个程序中的两个模块是用不同的对齐选项分别编译的,那么它很可能会产生一些非常微妙的错误。如果你的程序确实有很难理解的行为,不防仔细检查一下各个模块的编译选项。

思考题:请分析下面几种结构体在你的平台上的内存布局,并试着寻找一种合理安排字段声明顺序的方法以尽量节省内存空间。

复制代码 代码如下:

    A. struct P1 { int a; char b; int c; char d; };
    B. struct P2 { int a; char b; char c; int d; };
    C. struct P3 { short a[3]; char b[3]; };
    D. struct P4 { short a[3]; char *b[3]; };
    E. struct P5 { struct P2 *a; char b; struct P1 a[2];  };

相关文章

  • 详解C语言中不同类型的数据转换规则

    详解C语言中不同类型的数据转换规则

    这篇文章给大家讲解不同类型数据间的混合运算与类型转换,有自动类型转换和强制类型转换,针对每种转换方法小编给大家介绍的非常详细,需要的朋友参考下吧
    2021-07-07
  • C++深入学习之彻底理清重载函数匹配

    C++深入学习之彻底理清重载函数匹配

    C++ 不允许变量重名,但是允许多个函数取相同的名字,只要参数表不同即可,这叫作函数的重载,下面这篇文章主要给大家介绍了关于C++深入学习之彻底理清重载函数匹配的相关资料,需要的朋友可以参考下
    2019-01-01
  • 基于MFC实现贪吃蛇小游戏

    基于MFC实现贪吃蛇小游戏

    这篇文章主要为大家详细介绍了基于MFC实现贪吃蛇小游戏,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-07-07
  • Qt 信号自定义槽函数的实现

    Qt 信号自定义槽函数的实现

    Qt中实现自定义信号与槽函数,信号用于发送并触发槽函数,槽函数则是具体的功能实现,本文就详细的介绍一下如何使用,感兴趣的可以了解一下
    2021-11-11
  • C++修炼之构造函数与析构函数

    C++修炼之构造函数与析构函数

    本章节我们将学习类的6个默认成员函数中的构造函数与析构函数,并对比C语言阶段的内容来学习它们的各自的特性,感兴趣的同学可以参考阅读
    2023-03-03
  • C语言进阶二叉树的基础与销毁及层序遍历详解

    C语言进阶二叉树的基础与销毁及层序遍历详解

    朋友们好,这篇播客我们继续C++的初阶学习,现在对我们对C++的二叉树基础oj与二叉树销毁和层序遍历进行练习,让我们相互学习,共同进步
    2022-06-06
  • C/C++ 开发神器CLion使用入门超详细教程

    C/C++ 开发神器CLion使用入门超详细教程

    这篇文章主要介绍了C/C++ 开发神器CLion使用入门超详细教程,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-04-04
  • C语言 存储类详解及示例代码

    C语言 存储类详解及示例代码

    本篇文章主要介绍C语言 存储类,这里帮大家整理了存储类的基础资料,并提供示例代码和详细介绍,有兴趣的小伙伴可以参考下
    2016-08-08
  • 浅谈C#互操作的内存溢出问题

    浅谈C#互操作的内存溢出问题

    以前了解过c++的栈内存溢出,没想到在c#里被我遇到了,问题看似不大,如何被恰好相邻的四个字节是返回地址,说不定危害不小啊!看来c#的互操作还是得小心为好
    2013-10-10
  • C/C++中接收return返回来的数组元素方法示例

    C/C++中接收return返回来的数组元素方法示例

    return是C++预定义的语句,它提供了种植函数执行的一种放大,最近学习中遇到了相关return的内容,觉着有必要总结一下,这篇文章主要给大家介绍了关于C/C++中如何接收return返回来的数组元素的相关资料,需要的朋友可以参考下。
    2017-12-12

最新评论