算法详解之分支限界法的具体实现

 更新时间:2014年02月17日 14:51:09   作者:  
这篇文章主要介绍了算法详解之分支限界法的具体实现,需要的朋友可以参考下

首先我们来关注一个问题:

问题描述:

布线问题:印刷电路板将布线区域划分成n×m个方格阵列,要求确定连接方格阵列中的方格a的中点到方格b的中点的最短布线方案。在布线时,电路只能沿直线或直角布线,为了避免线路相交,已布了线的方格做了封锁标记,其他线路不允许穿过被封锁的方格。如下图所示:

 

算法思路:

布线问题的解空间是一个图,则从起始位置a开始将它作为第一个扩展结点。与该扩展结点相邻并可达的方格成为可行结点被加入到活结点队列中,并且将这些方格标记为1,即从起始方格a到这些方格的距离为1。接着,从活结点队列中取出队首结点作为下一个扩展结点,并将与当前扩展结点相邻且未标记过的方格标记为2,并存入活结点队列。这个过程一直继续到算法搜索到目标方格b或活结点队列为空时为止。

在实现上述算法时,

(1) 定义一个表示电路板上方格位置的类Position。

它的2个成员row和col分别表示方格所在的行和列。在方格处,布线可沿右、下、左、上4个方向进行。沿这4个方向的移动分别记为0,1,2,3。下表中,offset[i].row和offset[i].col(i= 0,1,2,3)分别给出沿这4个方向前进1步相对于当前方格的相对位移。

(2) 用二维数组grid表示所给的方格阵列。

初始时,grid[i][j] = 0, 表示该方格允许布线,而grid[i][j] = 1表示该方格被封锁,不允许布线。

算法图解:

代码贴出来:

复制代码 代码如下:

#include <stdio.h>
typedef struct {
  int row;
  int col;
}Position;
int FindPath (Position start, Position finish, int &PathLen, Position *&path)
{ //计算从起始位置start到目标位置finish的最短布线路径,找到返回1,否则,返回0
  int  i;
  if ((start.row = = finish.row) && (start.col = = finish.col)) {
PathLen = 0;   return 0; } //start = finish
  //设置方格阵列”围墙”
  for (i = 0; i <= m+1; i++)
grid[0][i] = grid[n+1][i] = 1; //顶部和底部
  for (i = 0; i <= n+1; i++)
grid[i][0] = grid[i][m+1] = 1; //左翼和右翼
  //初始化相对位移
int  NumOfNbrs = 4; //相邻方格数
  Position offset[4], here, nbr;
  offset[0].row = 0;   offset[0].col = 1;   //右
  offset[0].row = 1;   offset[0].col = 0;   //下
  offset[0].row = 0;   offset[0].col = -1;  //左
  offset[0].row = -1;  offset[0].row = 0;  //上
  here.row = start.row;
  here.col = start.col;
  LinkedQueue <Position> Q; //标记可达方格位置
  do {
for (i = 0; i< NumOfNbrs; i++) { //标记可达相邻方格
nbr.row = here.row + offset[i].row ;
nbr.col = here.col + offset[i].col;
if (grid[nbr.row][nbr.col] = = 0) { //该方格未标记
  grid[nbr.row][nbr.col] = grid[here.row][here.col] + 1;
if ((nbr.row = = finish.row) && (nbr.col = = finish.col))  break;//完成布线
Q.Add(nbr); 
       }
}
if ((nbr.row = = finishi.row) && (nbr.col = = finish.col))  break;//完成布线
if (Q.IsEmpty()) //活队列是否为空
return 0; //无解
      Q.delete(here); //取下一个扩展结点
}while (1);
//构造最短布线路径
PathLen = grid[finish.row][finish.col] - 2;
path = new Position[PathLen];
here = finish;
for (int j = PathLen – 1; j >= 0; j--) { //找前驱位置
  path[j] = here;
  for (i = 0; i< NumOfNbrs; i++) {
nbr.row = here.row + offset[i].row ;
nbr.col = here.col + offset[i].col;
if (grid[nbr.row][nbr.col] = = j+2)  break;
}
  here = nbr; //向前移动
  }
return 1;
}
void main ()
{
  int grid[8][8];
  int PathLen, *path;
  Position start, finish;
  start.row = 3;  start.col = 2;
  finish.row = 4; finish.col = 6;


  FindPath (start, finish, PathLen, path);
 }

代码贴出来:

复制代码 代码如下:

#include <stdio.h>
typedef struct {
  int row;
  int col;
}Position;
int FindPath (Position start, Position finish, int &PathLen, Position *&path)
{ //计算从起始位置start到目标位置finish的最短布线路径,找到返回1,否则,返回0
  int  i;
  if ((start.row = = finish.row) && (start.col = = finish.col)) {
PathLen = 0;   return 0; } //start = finish
  //设置方格阵列”围墙”
  for (i = 0; i <= m+1; i++)
grid[0][i] = grid[n+1][i] = 1; //顶部和底部
  for (i = 0; i <= n+1; i++)
grid[i][0] = grid[i][m+1] = 1; //左翼和右翼
  //初始化相对位移
int  NumOfNbrs = 4; //相邻方格数
  Position offset[4], here, nbr;
  offset[0].row = 0;   offset[0].col = 1;   //右
  offset[0].row = 1;   offset[0].col = 0;   //下
  offset[0].row = 0;   offset[0].col = -1;  //左
  offset[0].row = -1;  offset[0].row = 0;  //上
  here.row = start.row;
  here.col = start.col;
  LinkedQueue <Position> Q; //标记可达方格位置
  do {
for (i = 0; i< NumOfNbrs; i++) { //标记可达相邻方格
nbr.row = here.row + offset[i].row ;
nbr.col = here.col + offset[i].col;
if (grid[nbr.row][nbr.col] = = 0) { //该方格未标记
  grid[nbr.row][nbr.col] = grid[here.row][here.col] + 1;
if ((nbr.row = = finish.row) && (nbr.col = = finish.col))  break;//完成布线
Q.Add(nbr); 
       }
}
if ((nbr.row = = finishi.row) && (nbr.col = = finish.col))  break;//完成布线
if (Q.IsEmpty()) //活队列是否为空
return 0; //无解
      Q.delete(here); //取下一个扩展结点
}while (1);
//构造最短布线路径
PathLen = grid[finish.row][finish.col] - 2;
path = new Position[PathLen];
here = finish;
for (int j = PathLen – 1; j >= 0; j--) { //找前驱位置
  path[j] = here;
  for (i = 0; i< NumOfNbrs; i++) {
nbr.row = here.row + offset[i].row ;
nbr.col = here.col + offset[i].col;
if (grid[nbr.row][nbr.col] = = j+2)  break;
}
  here = nbr; //向前移动
  }
return 1;
}
void main ()
{
  int grid[8][8];
  int PathLen, *path;
  Position start, finish;
  start.row = 3;  start.col = 2;
  finish.row = 4; finish.col = 6;


  FindPath (start, finish, PathLen, path);
 }


好了,问题解出来了。咦,我们用的是什么方法呢?呵呵,对,这就是分支限界算法。


算法总结:

分支限界法基本思想:

• 分支限界法常以广度优先或以最小耗费(最大效益)优先的方式搜索问题的解空间树。

• 在分支限界法中,每一个活结点只有一次机会成为扩展结点。活结点一旦成为扩展结点,就一次性产生其所有儿子结点。

• 在这些儿子结点中,导致不可行解或导致非最优解的儿子结点被舍弃,其余儿子结点被加入活结点表中。

• 此后,从活结点表中取下一结点成为当前扩展结点,并重复上述结点扩展过程。这个过程一直持续到找到所需的解或活结点表为空时为止。

分支限界法与回溯法的不同:

(1)求解目标不同:回溯法的求解目标是找出解空间树中满足约束条件的所有解,而分支限界法的求解目标则是找出满足约束条件的一个解,或是在满足约束条件的解中找出在某种意义下的最优解。

(2)搜索方式的不同:回溯法以深度优先的方式搜索解空间树,而分支限界法则以广度优先或以最小耗费优先的方式搜索解空间树。

相关文章

  • c语言中形参与实参的关系解读

    c语言中形参与实参的关系解读

    这篇文章主要介绍了c语言中形参与实参的关系,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-07-07
  • OpenCV实现更改图片颜色功能

    OpenCV实现更改图片颜色功能

    这篇文章主要为大家详细介绍了如何利用OpenCV实现更改图片颜色的功能,文中代码介绍详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2022-05-05
  • 用c语言实现《狼人杀》游戏发牌系统

    用c语言实现《狼人杀》游戏发牌系统

    大家好,本篇文章主要讲的是用c语言实现《狼人杀》游戏发牌系统,感兴趣的同学赶快来看一看吧,对你有帮助的话记得收藏一下
    2022-01-01
  • C语言实现通讯录系统课程设计

    C语言实现通讯录系统课程设计

    这篇文章主要为大家详细介绍了C语言实现通讯录系统课程设计,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2022-07-07
  • Opencv基于文字检测去图片水印的实现示例

    Opencv基于文字检测去图片水印的实现示例

    去水印是个麻烦事,本文就来介绍一种方法Opencv基于文字检测去图片水印的实现示例,具有一定的参考价值,感兴趣的可以了解一下
    2023-09-09
  • C语言实现大顶堆的示例代码

    C语言实现大顶堆的示例代码

    最大堆,又称大根堆(大顶堆)是指根结点(亦称为堆顶)的关键字是堆里所有结点关键字中最大者,属于二叉堆的两种形式之一。本文将用C语言实现大顶堆,感兴趣的可以了解一下
    2022-07-07
  • C++读写ini配置文件实现过程详解

    C++读写ini配置文件实现过程详解

    这篇文章主要介绍了C++读写ini配置文件实现过程详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-07-07
  • c++仿函数和函数适配器的使用详解

    c++仿函数和函数适配器的使用详解

    这篇文章主要介绍了c++仿函数和函数适配器的使用详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-12-12
  • C++之文件输入/输出流类解读

    C++之文件输入/输出流类解读

    这篇文章主要介绍了C++之文件输入/输出流类,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2023-08-08
  • C++中的数据内存分布原理

    C++中的数据内存分布原理

    这篇文章主要介绍了C++中的数据内存分布,主要从动态内存管理方式,内存泄漏等方面介绍的,文中也有相关的示例代码,需要的朋友可以参考下
    2023-05-05

最新评论