算法详解之回溯法具体实现

 更新时间:2014年02月17日 14:56:06   作者:  
这篇文章主要介绍了算法详解之回溯法具体实现,需要的朋友可以参考下

理论辅助:

回溯算法也叫试探法,它是一种系统地搜索问题的解的方法。回溯算法的基本思想是:从一条路往前走,能进则进,不能进则退回来,换一条路再试。用回溯算法解决问题的一般步骤为:

1、定义一个解空间,它包含问题的解。

2、利用适于搜索的方法组织解空间。

3、利用深度优先法搜索解空间。

4、利用限界函数避免移动到不可能产生解的子空间。

问题的解空间通常是在搜索问题的解的过程中动态产生的,这是回溯算法的一个重要特性。

还是那个基调,不喜欢纯理论的东西,喜欢使用例子来讲诉理论,在算法系列总结:动态规划(解公司外包成本问题) 的那一节里面 我们举得是经典的0-1背包问题,在回溯算法里面也有一些很经典的问题,当然,动态规划的0-1背包问题其实也可以使用回溯算法来解。在诸如此类似的求最优解的问题中,大部分其实都可以用回溯法来解决,可以认为回溯算法一个”通用解题法“,这是由他试探性的行为决定的,就好比求一个最优解,我可能没有很好的概念知道怎么做会更快的求出这个最优解,但是我可以尝试所有的方法,先试探性的尝试每一个组合,看看到底通不通,如果不通,则折回去,由最近的一个节点继续向前尝试其他的组合,如此反复。这样所有解都出来了,在做一下比较,能求不出最优解吗?

例子先行,现在我们来看看经典的N后问题

问题描述:在n*n格的棋盘上放置彼此不受攻击的n个皇后。按照国际象棋的规矩,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。n后问题等价于在n*n格的棋盘上方置n个皇后,任何2个皇后不放在同一行或同一列或同一斜线上。我们需要求的是可放置的总数。
 

基本思路:   用n元组x[1;n]表示n后问题的解。其中,x[i]表示皇后i放置在棋盘的第i行的第x[i]列。由于不容许将2个皇后放在同一列上,所以解向量中的x[i]互不相同。2个皇后不能放在同一斜线上是问题的隐约束。对于一般的n后问题,这一隐约束条件可以化成显约束的形式。如果将n*n 格的棋盘看做二维方阵,其行号从上到下,列号从左到右依次编号为1,2,...n。从棋盘左上角到右下角的主对角线及其平行线(即斜率为-1的各斜线)上,2个下标值的差(行号-列号)值相等。同理,斜率为+1的每条斜线上,2个下标值的和(行号+列号)值相等。因此,若2个皇后放置的位置分别是(i,j)和(k,l),且 i-j = k -l 或 i+j = k+l,则说明这2个皇后处于同一斜线上。以上2个方程分别等价于i-k = j-l 和 i-k =l-j。由此可知,只要|i-k|=|l-j|成立,就表明2个皇后位于同一条斜线上。

1、从空棋盘起,逐行放置棋子。
2、每在一个布局中放下一个棋子,即推演到一个新的布局。
3、如果当前行上没有可合法放置棋子的位置,则回溯到上一行,重新布放上一行的棋子。
代码:

复制代码 代码如下:

#include <stdio.h> 
#include <math.h> 
#include<stdlib.h> 
static int n,x[1000]; 
static    long sum; 
int Place(int k) 

for(int j=1;j <k; j++) 
    if((abs(k-j) == abs(x[j]-x[k]))||(x[j]==x[k])) return 0; 
     return 1; 
  }


void Backtrak(int t) 

   if(t>n) sum++; 
   else 
       for(int i=1; i <= n; i++) 
       { 
            x[t] =i; 
            if(Place(t))Backtrak(t+1); 
       } 
}


int main() 

    int nn; 
    while(scanf("%d",&nn)!=EOF) 
    { 
    n=nn; 
    sum=0; 
    for(int i=0;i<=n;i++) 
    x[i]=0; 
    Backtrak(1); 
    printf("%d\n",sum); 

}

这段代码有必要解释一下,Place(int)即尝试看是否可以,如果不可以则回退到t+1层,再尝试其他的组合。

这里也道出了回溯算法的核心思想:但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择

算法实践:

问题描述:在一个n*n的网格里,每个网格可能为“墙壁”(用‘X'表示)和“街道”(用‘.'表示)。现在在街道放置碉堡,每个碉堡可以向上下左右四个方向开火,子弹射程无限远。墙壁可以阻挡子弹。问最多能放置多少个碉堡,使它们彼此不会互相摧毁。

如下面四张图,墙壁用黑正方形表示,街道用空白正方形表示,圆球就代表碉堡。1,2,3是正确的,4,5是错误的。以为4,5里面在某一行或者某一列有两个碉堡,这样他们就会互相攻击了。意思明白了吗?可能我的表达很不清晰,呵呵….

输入输出示例


Sample input:
      ——————输入的n值 
.X.. 
.... 

XX..
.... 

XX 
.X 
.X. 
X.X 
.X. 
.... 
.... 
.... 
....

Sample output:


初拿到这个问题,你会不会想到回溯算法呢?有人说遍历墙的位置,然后再墙的上下左右四个格子放置碉堡会得到最优解,这个我没有验证过,细细的用笔画了画,好像是这么回事,但是很多时候要知道最优解用什么方法是很难发现的,利用通用解题方法回溯法,我们可以在一片茫然的时候开始我们的编程

首先我们来分析一下这个问题:使用回溯法,我们尝试每一种可能放置的情况,然后进行判断是否满足要求,若不满足,尝试放到下一个单元格,如此反复,最终,我们将所有可能放置的情况全部遍历出来了,连所有情况都出来了,难不成还找不到最优解吗?哈哈。。说做就做…

复制代码 代码如下:

#include <stdio.h>
     char map[4][4];
     int best,n;
     int canput(int row, int col)
     {
        int i;
        for (i = row - 1; i >= 0; i--)
        {
          if (map[i][col] == 'o') return 0;
          if (map[i][col] == 'x') break;
        }
        for (i = col - 1; i >= 0; i--)
        {
          if (map[row][i] == 'o') return 0;
          if (map[row][i] == 'x') break;
        }
        return 1;
     }

     void solve(int k,int tot)
     {
        int x,y;
        if(k==n*n)
        {
          if(tot>best)
          {
           best=tot;   return;
          }
        }
        else
        {
          x=k/n;
          y=k%n;
          if((map[x][y]=='.') && (canput(x,y) ) )
          {
            map[x][y]='o';
            solve(k+1,tot+1);
            map[x][y]='.';
          }
         solve(k+1,tot);
         }
      }

     int main()
     {
        int i,j;
        scanf("%d",&n);
        while(n>0)
        {
          for(i=0;i< n;i++)
             for(j=0;j< n;j++)
                 scanf("%1s",&map[i][j]);
          best=0;
          solve(0,0);
          printf("%d\n",best);
          n=0;                            
          scanf("%d",&n);
        }
        return 0;
 }

对上面的代码做一下点解释,canput是做检验的,检验放在某个地点到底行不行得通,solve才是真正进行递归回溯的函数。。

相关文章

  • C++数组指针和二维数组详情

    C++数组指针和二维数组详情

    这篇文章主要介绍了C++数组指针和二维数组,指针数组和二维数组在应用中常用于函数传参,下面我们就来看看指针数组和二维数组在应用中的具体使用吧,需要的朋友可以参考一下
    2021-10-10
  • Qt实现高精度定时器

    Qt实现高精度定时器

    这篇文章主要为大家详细介绍了Qt实现高精度定时器,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2022-08-08
  • C++实现简单计算器功能

    C++实现简单计算器功能

    这篇文章主要为大家详细介绍了C++实现简单计算器功能,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2020-05-05
  • C和C++中argc和argv的含义及用法详解

    C和C++中argc和argv的含义及用法详解

    argv 是 argument vector的缩写,表示传入main函数的参数序列或指针,这篇文章主要介绍了C和C++中argc和argv的含义以及用法,需要的朋友可以参考下
    2022-11-11
  • 谈谈C++中的单例

    谈谈C++中的单例

    这篇文章主要介绍了C++中单例的相关资料,帮助大家更好的理解和学习c++,感兴趣的朋友可以了解下
    2020-09-09
  • VSCode插件开发全攻略之命令、菜单、快捷键

    VSCode插件开发全攻略之命令、菜单、快捷键

    这篇文章主要介绍了VSCode插件开发全攻略之命令、菜单、快捷键,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-05-05
  • C语言中scanf与scanf_s函数的使用详解

    C语言中scanf与scanf_s函数的使用详解

    本文主要介绍了C语言中scanf与scanf_s函数的使用详解,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-10-10
  • 基于epoll的多线程网络服务程序设计

    基于epoll的多线程网络服务程序设计

    这篇文章主要为大家详细介绍了基于epoll的多线程网络服务程序设计,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2022-08-08
  • 如何查看进程实际的内存占用情况详解

    如何查看进程实际的内存占用情况详解

    本篇文章是对如何查看进程实际的内存占用情况进行了详细的分析介绍,需要的朋友参考下
    2013-05-05
  • C++模板之特化与偏特化详解

    C++模板之特化与偏特化详解

    这篇文章主要介绍了C++模板之特化与偏特化详解,本文讲解了什么是C++模板、模板特化、模板偏特化、特化与偏特化的调用顺序等内容,需要的朋友可以参考下
    2014-10-10

最新评论