C++普通函数指针与成员函数指针实例解析

 更新时间:2014年08月15日 15:49:48   投稿:shichen2014  
这篇文章主要介绍了C++普通函数指针与成员函数指针,很重要的知识点,需要的朋友可以参考下

C++的函数指针(function pointer)是通过指向函数的指针间接调用函数。相信很多人对指向一般函数的函数指针使用的比较多,而对指向类成员函数的函数指针则比较陌生。本文即对C++普通函数指针与成员函数指针进行实例解析。

一、普通函数指针

通常我们所说的函数指针指的是指向一般普通函数的指针。和其他指针一样,函数指针指向某种特定类型,所有被同一指针运用的函数必须具有相同的形参类型和返回类型。

int (*pf)(int, int);  // 声明函数指针

这里,pf指向的函数类型是int (int, int),即函数的参数是两个int型,返回值也是int型。

注:*pf两端的括号必不可少,如果不写这对括号,则pf是一个返回值为int指针的函数。

#include<iostream> 
#include<string> 
using namespace std; 
 
typedef int (*pFun)(int, int); // typedef一个类型 
 
int add(int a, int b){ 
  return a+b; 
} 
 
int mns(int a, int b){ 
  return a-b; 
} 
 
string merge(const string& s1, const string& s2){ 
  return s1+s2; 
} 
 
int main() 
{ 
  pFun pf1 = add;  
  cout << (*pf1)(2,3) << endl; // 调用add函数 
  pf1 = mns; 
  cout << (*pf1)(8,1) << endl; // 调用mns函数 
  string (*pf2)(const string&, const string&) = merge; 
  cout << (*pf2)("hello ", "world") << endl; // 调用merge函数 
  return 0; 
}

如示例代码,直接声明函数指针变量显得冗长而烦琐,所以我们可以使用typedef定义自己的函数指针类型。另外,函数指针还可以作为函数的形参类型,实参则可以直接使用函数名。

二、成员函数指针

成员函数指针(member function pointer)是指可以指向类的非静态成员函数的指针。类的静态成员不属于任何对象,因此无须特殊的指向静态成员的指针,指向静态成员的指针与普通指针没有什么区别。与普通函数指针不同的是,成员函数指针不仅要指定目标函数的形参列表和返回类型,还必须指出成员函数所属的类。因此,我们必须在*之前添加classname::以表示当前定义的指针指向classname的成员函数:

int (A::*pf)(int, int);  // 声明一个成员函数指针 

同理,这里A::*pf两端的括号也是必不可少的,如果没有这对括号,则pf是一个返回A类数据成员(int型)指针的函数。注意:和普通函数指针不同的是,在成员函数和指向该成员的指针之间不存在自动转换规则。

pf = &A::add;  // 正确:必须显式地使用取址运算符(&) 
pf = A::add;  // 错误 

当我们初始化一个成员函数指针时,其指向了类的某个成员函数,但并没有指定该成员所属的对象——直到使用成员函数指针时,才提供成员所属的对象。下面是一个成员函数指针的使用示例:

class A; 
typedef int (A::*pClassFun)(int, int); // 成员函数指针类型 
 
class A{ 
public: 
  int add(int m, int n){ 
    cout << m << " + " << n << " = " << m+n << endl; 
    return m+n; 
  } 
  int mns(int m, int n){ 
    cout << m << " - " << n << " = " << m-n << endl; 
    return m-n; 
  } 
  int mul(int m, int n){ 
    cout << m << " * " << n << " = " << m*n << endl; 
    return m*n; 
  } 
  int dev(int m, int n){ 
    cout << m << " / " << n << " = " << m/n << endl; 
    return m/n; 
  } 
 
  int call(pClassFun fun, int m, int n){  // 类内部接口 
    return (this->*fun)(m, n); 
  } 
}; 
 
int call(A obj, pClassFun fun, int m, int n){  // 类外部接口 
  return (obj.*fun)(m, n); 
} 
 
int main() 
{ 
  A a; 
  cout << "member function 'call':" << endl; 
  a.call(&A::add, 8, 4); 
  a.call(&A::mns, 8, 4); 
  a.call(&A::mul, 8, 4); 
  a.call(&A::dev, 8, 4); 
  cout << "external function 'call':" << endl; 
  call(a, &A::add, 9, 3); 
  call(a, &A::mns, 9, 3); 
  call(a, &A::mul, 9, 3); 
  call(a, &A::dev, 9, 3); 
  return 0; 
}

如示例所示,我们一样可以使用typedef定义成员函数指针的类型别名。另外,我们需要留意函数指针的使用方法:对于普通函数指针,是这样使用(*pf)(arguments),因为要调用函数,必须先解引用函数指针,而函数调用运算符()的优先级较高,所以(*pf)的括号必不可少;对于成员函数指针,唯一的不同是需要在某一对象上调用函数,所以只需要加上成员访问符即可:

(obj.*pf)(arguments)     // obj 是对象 
(objptr->*pf)(arguments)   // objptr是对象指针  

三、函数表驱动

对于普通函数指针和指向成员函数的指针来说,一种常见的用法就是将其存入一个函数表(function table)当中。当程序需要执行某个特定的函数时,就从表中查找对应的函数指针,用该指针来调用相应的程序代码,这个就是函数指针在表驱动法中的应用。

表驱动法(Table-Driven Approach)就是用查表的方法获取信息。通常,在数据不多时可用逻辑判断语句(if…else或switch…case)来获取信息;但随着数据的增多,逻辑语句会越来越长,此时表驱动法的优势就体现出来了。

#include<iostream> 
#include<string> 
#include<map> 
using namespace std; 
 
class A; 
typedef int (A::*pClassFun)(int, int); 
 
class A{ 
public: 
  A(){  // 构造函数,初始化表 
    table["+"] = &A::add; 
    table["-"] = &A::mns; 
    table["*"] = &A::mul; 
    table["/"] = &A::dev; 
  } 
  int add(int m, int n){ 
    cout << m << " + " << n << " = " << m+n << endl; 
    return m+n; 
  } 
  int mns(int m, int n){ 
    cout << m << " - " << n << " = " << m-n << endl; 
    return m-n; 
  } 
  int mul(int m, int n){ 
    cout << m << " * " << n << " = " << m*n << endl; 
    return m*n; 
  } 
  int dev(int m, int n){ 
    cout << m << " / " << n << " = " << m/n << endl; 
    return m/n; 
  } 
  // 查找表,调用相应函数 
  int call(string s, int m, int n){ 
    return (this->*table[s])(m, n); 
  } 
private: 
  map<string, pClassFun> table; // 函数表 
}; 
 
// 测试 
int main() 
{ 
  A a; 
  a.call("+", 8, 2); 
  a.call("-", 8, 2); 
  a.call("*", 8, 2); 
  a.call("/", 8, 2); 
  return 0; 
}

上面是一个示例,示例中的“表”通过map来实现(当然也可以使用数组)。表驱动法使用时需要注意:一是如何查表,从表中读取正确的数据;二是表里存放什么,如数值或函数指针。

相关文章

  • Qt使用QChart实现动态显示温度变化曲线

    Qt使用QChart实现动态显示温度变化曲线

    Qt的QChart是一个用于绘制图表和可视化数据的类,提供了一个灵活的、可扩展的、跨平台的图表绘制解决方案,所以本文就将使用QChart实现动态显示3个设备的温度变化曲线,感兴趣的可以了解一下
    2023-06-06
  • C语言字符串旋转问题的深入讲解

    C语言字符串旋转问题的深入讲解

    这篇文章主要给大家介绍了关于C语言字符串旋转问题的相关资料,文中给出了详细的实现方法,并对每种方法进行了分析和示例代码,需要的朋友可以参考下
    2021-09-09
  • C语言数据的存储和取出详细讲解

    C语言数据的存储和取出详细讲解

    这篇文章主要介绍了C语言数据的存储和取出详细讲解,作者使用图文代码实例讲解,有感兴趣的同学可以学习研究下
    2021-02-02
  • 一文带你了解Qt中槽的使用

    一文带你了解Qt中槽的使用

    这篇文章主要为大家详细介绍了Qt中槽的使用教程,文中的示例代码讲解详细,对我们学习Qt有一定的帮助,感兴趣的小伙伴可以跟随小编一起学习一下
    2022-12-12
  • C++实现:螺旋矩阵的实例代码

    C++实现:螺旋矩阵的实例代码

    螺旋矩阵是指一个呈螺旋状的矩阵,它的数字由第一行开 始到右边不断变大,向下变大, 向左变大,向上变大,如此循环。
    2013-03-03
  • 使用c++实现OpenCV图像横向&纵向拼接

    使用c++实现OpenCV图像横向&纵向拼接

    这篇文章主要介绍了使用c++实现OpenCV图像横向&纵向拼接,文中有图像拼接函数,可以实现如“长图拼接王”这类小程序的类似功能,大家可以将该函数封装在软件中自由使用
    2021-08-08
  • C语言 指针与二维数组详解

    C语言 指针与二维数组详解

    本文主要介绍C语言 指针与二维数组,这里整理了详细的资料及示例代码,有需要的小伙伴可以参考下
    2016-08-08
  • C语言基于贪心算法解决装箱问题的方法

    C语言基于贪心算法解决装箱问题的方法

    这篇文章主要介绍了C语言基于贪心算法解决装箱问题的方法,简单描述了装箱问题,并结合实例形式给出了C语言使用贪心算法解决贪心问题的相关操作技巧,需要的朋友可以参考下
    2018-06-06
  • 筛选法的C++实现

    筛选法的C++实现

    筛选法又称筛法,是求不超过自然数N(N>1)的所有质数的一种方法。据说是古希腊的埃拉托斯特尼(Eratosthenes,约公元前274~194年)发明的,又称埃拉托斯特尼筛子
    2013-10-10
  • C++有限状态机实现详解

    C++有限状态机实现详解

    这篇文章主要为大家详细介绍了C++有限状态机的相关资料,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-10-10

最新评论