数据结构之Treap详解

 更新时间:2014年08月28日 09:34:29   投稿:junjie  
这篇文章主要介绍了数据结构之Treap详解,本文讲解了Treap的基本知识、Treap的基本操作、Treap的高级操作技巧等,需要的朋友可以参考下

1. 概述

同splay tree一样,treap也是一个平衡二叉树,不过Treap会记录一个额外的数据,即优先级。Treap在以关键码构成二叉搜索树的同时,还按优先级来满足堆的性质。因而,Treap=tree+heap。这里需要注意的是,Treap并不是二叉堆,二叉堆必须是完全二叉树,而Treap可以并不一定是。

2. Treap基本操作

为了使Treap 中的节点同时满足BST性质和最小堆性质,不可避免地要对其结构进行调整,调整方式被称为旋转。在维护Treap 的过程中,只有两种旋转,分别是左旋转(简称左旋)和右旋转(简称右旋)。
左旋一个子树,会把它的根节点旋转到根的左子树位置,同时根节点的右子节点成为子树的根;右旋一个子树,会把它的根节点旋转到根的右子树位置,同时根节点的左子节点成为子树的根。

struct Treap_Node
 
{
 
 Treap_Node *left,*right; //节点的左右子树的指针
 
 int value,fix; //节点的值和优先级
 
};
 
void Treap_Left_Rotate(Treap_Node *&a) //左旋 节点指针一定要传递引用
 
{
 
 Treap_Node *b=a->right;
 
 a->right=b->left;
 
 b->left=a;
 
 a=b;
 
}
 
void Treap_Right_Rotate(Treap_Node *&a) //右旋 节点指针一定要传递引用
 
{
 
 Treap_Node *b=a->left;
 
 a->left=b->right;
 
 b->right=a;
 
 a=b;
 
}

3. Treap的操作

同其他树形结构一样,treap的基本操作有:查找,插入,删除等。

3.1    查找

同其他二叉树一样,treap的查找过程就是二分查找的过程,复杂度为O(lg n)。

3.2    插入

在Treap 中插入元素,与在BST 中插入方法相似。首先找到合适的插入位置,然后建立新的节点,存储元素。但是要注意新的节点会有一个优先级属性,该值可能会破坏堆序,因此我们要根据需要进行恰当的旋转。具体方法如下:

1. 从根节点开始插入;
2. 如果要插入的值小于等于当前节点的值,在当前节点的左子树中插入,插入后如果左子节点的优先级小于当前节点的优先级,对当前节点进行右旋;
3. 如果要插入的值大于当前节点的值,在当前节点的右子树中插入,插入后如果右子节点的优先级小于当前节点的优先级,对当前节点进行左旋;
4. 如果当前节点为空节点,在此建立新的节点,该节点的值为要插入的值,左右子树为空,插入成功。

Treap_Node *root;
 
void Treap_Insert(Treap_Node *&P,int value) //节点指针一定要传递引用
 
{
 
 if (!P) //找到位置,建立节点
 
 {
 
  P=new Treap_Node;
 
  P->value=value;
 
  P->fix=rand();//生成随机的修正值
 
 }
 
 else if (value <= P->value)
 
 {
 
  Treap_Insert(P->left,r);
 
  if (P->left->fix < P->fix)
 
   Treap_Right_Rotate(P);//左子节点修正值小于当前节点修正值,右旋当前节点
 
 }
 
 else
 
 {
 
  Treap_Insert(P->right,r);
 
  if (P->right->fix < P->fix)
 
   Treap_Left_Rotate(P);//右子节点修正值小于当前节点修正值,左旋当前节点
 
 }
 
}

3.3   删除

与BST 一样,在Treap 中删除元素要考虑多种情况。我们可以按照在BST 中删除元素同样的方法来删除Treap 中的元素,即用它的后继(或前驱)节点的值代替它,然后删除它的后继(或前驱)节点。

上述方法期望时间复杂度为O(logN),但是这种方法并没有充分利用Treap 已有的随机性质,而是重新得随机选取代替节点。我们给出一种更为通用的删除方法,这种方法是基于旋转调整的。首先要在Treap 树中找到待删除节点的位置,然后分情况讨论:

情况一,该节点为叶节点或链节点,则该节点是可以直接删除的节点。若该节点有非空子节点,用非空子节点代替该节点的,否则用空节点代替该节点,然后删除该节点。

情况二,该节点有两个非空子节点。我们的策略是通过旋转,使该节点变为可以直接删除的节点。如果该节点的左子节点的优先级小于右子节点的优先级,右旋该节点,使该节点降为右子树的根节点,然后访问右子树的根节点,继续讨论;反之,左旋该节点,使该节点降为左子树的根节点,然后访问左子树的根节点,这样继续下去,直到变成可以直接删除的节点。

BST_Node *root;
 
void Treap_Delete(Treap_Node *&P,int *value) //节点指针要传递引用
 
{
 
 if (value==P->value) //找到要删除的节点 对其删除
 
 {
 
  if (!P->right || !P->left) //情况一,该节点可以直接被删除
 
  {
 
   Treap_Node *t=P;
 
   if (!P->right)
 
    P=P->left; //用左子节点代替它
 
   else
 
    P=P->right; //用右子节点代替它
 
   delete t; //删除该节点
 
  }
 
  else //情况二
 
  {
 
   if (P->left->fix < P->right->fix) //左子节点修正值较小,右旋
 
   {
 
    Treap_Right_Rotate(P);
 
    Treap_Delete(P->right,r);
 
   }
 
   else //左子节点修正值较小,左旋
 
   {
 
    Treap_Left_Rotate(P);
 
     Treap_Delete(P->left,r);
 
   }
 
  }
 
 }
 
 else if (value < P->value)
 
  Treap_Delete(P->left,r); //在左子树查找要删除的节点
 
 else
 
  Treap_Delete(P->right,r); //在右子树查找要删除的节点
 
}

4. Treap应用
Treap可以解决splay tree可以解决的所有问题,具体参见另一篇文章:《数据结构之伸展树详解

可以这样定义结构体:

struct Treap_Node
 
{
 
 Treap_Node *left,*right; //节点的左右子树的指针
 
 int value,fix,weight,size; //节点的值,优先级,重复计数(记录相同节点个数,节省空间),子树大小
 
 inline int lsize(){ return left ?left->size ?0; } //返回左子树的节点个数
 
 inline int rsize(){ return right?right->size?0; } //返回右子树的节点个数
 
};

5. 总结

Treap 作为一种简洁高效的有序数据结构,在计算机科学和技术应用中有着重要的地位。它可以用来实现集合、多重集合、字典等容器型数据结构,也可以用来设计动态统计数据结构。

6. 参考资料

(1)Treap:http://www.nocow.cn/index.php/Treap
(2)随机平衡二叉查找树Treap 的分析与应用:http://www.byvoid.com/blog/wp-content/uploads/2010/12/treap-analysis-and-application.pdf

相关文章

  • c语言中unsigned修饰符的使用

    c语言中unsigned修饰符的使用

    在C语言中,unsigned是一种无符号整数修饰符,本文主要介绍了c语言中unsigned修饰符的使用,具有一定的参考价值,感兴趣的可以了解一下
    2023-11-11
  • 深入浅析C/C++ 的条件编译

    深入浅析C/C++ 的条件编译

    条件编译是指预处理的时候根据条件编译的指令有条件的选择源程序中的一部分代码送给编译器进行编译,进行有选择性的操作,防止宏替换的内容重复包含,这篇文章主要介绍了C/C++ 的条件编译,需要的朋友可以参考下
    2022-04-04
  • C语言深入探究选择排序与基数排序使用案例讲解

    C语言深入探究选择排序与基数排序使用案例讲解

    算法中排序是十分重要的,而每一个学习计算机的都会在初期的时候接触到这种排序,下面这篇文章主要给大家介绍了关于c语言选择排序与基数排序使用的相关资料,需要的朋友可以参考下
    2022-05-05
  • C++提取文件中信息的方法

    C++提取文件中信息的方法

    这篇文章主要为大家详细介绍了C++提取文件中信息的方法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2017-07-07
  • C++中的复制构造函数详解

    C++中的复制构造函数详解

    今天小编就为大家分享一篇关于关于C++复制构造函数的实现讲解,小编觉得内容挺不错的,现在分享给大家,具有很好的参考价值,需要的朋友一起跟随小编来看看吧
    2021-09-09
  • C++ 实现的通讯录管理系统详解

    C++ 实现的通讯录管理系统详解

    这篇文章主要为大家详细介绍了C++实现通讯录管理系统,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-10-10
  • OpenCV实现绕图片中任意角度旋转任意角度

    OpenCV实现绕图片中任意角度旋转任意角度

    这篇文章主要为大家详细介绍了在图片不被裁剪时,opencv如何实现绕图片中任意点旋转任意角度,文中的示例代码讲解详细,需要的可以参考一下
    2022-09-09
  • 看图深入理解单链表的反转

    看图深入理解单链表的反转

    今天遇到单向链表的反转的问题,于是静下心来好好想了一番。下面这篇文章主要给大家介绍了关于单链表反转的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面来一起学习学习吧
    2019-02-02
  • Visual C++中Tab View的多种实现方法

    Visual C++中Tab View的多种实现方法

    这篇文章主要介绍了Visual C++中Tab View的多种实现方法,包括了CTabCtrl控件、CSheetCtrl标签选择窗口以及静态分割窗口等实现Tab View的方法,需要的朋友可以参考下
    2014-10-10
  • C到C++的升级关系及区别实例探究

    C到C++的升级关系及区别实例探究

    这篇文章主要为大家介绍了C到C++的升级关系及区别实例探究,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2024-01-01

最新评论