Python获取单个程序CPU使用情况趋势图

 更新时间:2015年03月10日 10:59:22   投稿:junjie  
这篇文章主要介绍了Python获取单个程序CPU使用情况趋势图,本文使用matplotlib将数据可视化,需要的朋友可以参考下

本文定位:已将CPU历史数据存盘,等待可视化进行分析,可暂时没有思路。
前面一篇文章(https://www.jb51.net/article/61956.htm)提到过在linux下如何用python将top命令的结果进行存盘,本文是它的后续。

python中我们可以用matplotlib很方便的将数据可视化,比如下面的代码:

复制代码 代码如下:

import matplotlib.pyplot as plt

list1 = [1,2,3]
list2 = [4,5,9]
plt.plot(list1,list2)
plt.show()

执行效果如下:

上面只是给plot函数传了两个list数据结构,show一下图形就出来了……哈哈,很方便吧!
获取CPU趋势图就用这个了!
可我们现在得到的数据没那么友好,比如我现在有个文件(file.txt),内容如下:

复制代码 代码如下:

Cpu(s): 0.0%us, 0.0%sy, 0.0%ni,100.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Cpu(s): 7.7%us, 7.7%sy, 0.0%ni, 76.9%id, 0.0%wa, 0.0%hi, 7.7%si, 0.0%st
Cpu(s): 0.0%us, 9.1%sy, 0.0%ni, 90.9%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Cpu(s): 9.1%us, 0.0%sy, 0.0%ni, 90.9%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Cpu(s): 8.3%us, 8.3%sy, 0.0%ni, 83.3%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Cpu(s): 0.0%us, 0.0%sy, 0.0%ni,100.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Cpu(s): 0.0%us, 9.1%sy, 0.0%ni, 90.9%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Cpu(s): 0.0%us, 0.0%sy, 0.0%ni,100.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st

其中,第一列为时间,第六列为CPU的idle值。

要从这组数据中得出CPU使用情况趋势图,我们就要做些工作了。

下面是代码,这里提供一个思路,需要的朋友拷回去改一下吧:

复制代码 代码如下:

#coding:utf-8
'''
      File      : cpuUsage.py
      Author    : Mike
      E-Mail    : Mike_Zhang@live.com
'''
import matplotlib.pyplot as plt
import string

def getCpuInfData(fileName):
    ret = {}
    f = open(fileName,"r")
    lineList = f.readlines()
    for line in lineList:
        tmp = line.split()
        sz = len(tmp)
        t_key = string.atoi(tmp[0]) # 得到key
        t_value = 100.001-string.atof(line.split(':')[1].split(',')[3].split('%')[0]) # 得到value
        print t_key,t_value   
        if not ret.has_key(t_key) :
            ret[t_key] = []
        ret[t_key].append(t_value)
    f.close()
    return ret
   
retMap1 = getCpuInfData("file.txt")
# 生成CPU使用情况趋势图
list1 = retMap1.keys()
list1.sort()
list2 = []
for i in list1:list2.append(retMap1[i])
plt.plot(list1,list2)
plt.show()

好,就这些了,希望对你有帮助。

相关文章

  • 教你漂亮打印Pandas DataFrames和Series

    教你漂亮打印Pandas DataFrames和Series

    在今天的文章中,我们将探讨如何配置所需的pandas选项,这些选项将使我们能够“漂亮地打印” pandas DataFrames,需要的朋友可以参考下
    2021-05-05
  • 记录模型训练时loss值的变化情况

    记录模型训练时loss值的变化情况

    这篇文章主要介绍了记录模型训练时loss值的变化情况,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-06-06
  • 深度学习详解之初试机器学习

    深度学习详解之初试机器学习

    机器学习可应用在各个方面,本篇将在系统性进入机器学习方向前,初步认识机器学习,利用线性回归预测波士顿房价,让我们一起来看看吧
    2021-04-04
  • 使用python框架Scrapy爬取数据的操作步骤

    使用python框架Scrapy爬取数据的操作步骤

    Scrapy是一个基于Python的强大的开源网络爬虫框架,用于从网站上抓取信息,它提供了广泛的功能,使得爬取和分析数据变得相对容易,本文小编将给给大家介绍一下如何使用python框架Scrapy爬取数据,需要的朋友可以参考下
    2023-10-10
  • python3 线性回归验证方法

    python3 线性回归验证方法

    今天小编就为大家分享一篇python3 线性回归验证方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-07-07
  • python列表中remove()函数的使用方法详解

    python列表中remove()函数的使用方法详解

    这篇文章主要给大家介绍了关于python列表中remove()函数的使用,以及Python列表的remove方法的注意事项,文中通过示例代码介绍的非常详细,需要的朋友可以参考下
    2021-12-12
  • python使用js2py库运行js代码

    python使用js2py库运行js代码

    本文主要介绍了thon使用js2py库运行js代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2022-05-05
  • Python pathlib模块使用方法及实例解析

    Python pathlib模块使用方法及实例解析

    这篇文章主要介绍了Python pathlib模块使用方法及实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-10-10
  • Python单元测试的9个技巧技巧

    Python单元测试的9个技巧技巧

    这篇文章主要给大家分享的是Python单元测试常见的几个技巧,文章会讲解requests的一些细节实现以及pytest的使用等,感兴趣的小伙伴不妨和小编一起阅读下面文章 的具体内容吧
    2021-09-09
  • Python列表的深复制和浅复制示例详解

    Python列表的深复制和浅复制示例详解

    这篇文章主要给大家介绍了关于Python列表的深复制和浅复制的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-02-02

最新评论