Python利用多进程将大量数据放入有限内存的教程

 更新时间:2015年04月01日 10:54:58   作者:James Tobin  
这篇文章主要介绍了Python利用多进程将大量数据放入有限内存的教程,使用了multiprocessing和pandas来加速内存中的操作,需要的朋友可以参考下

简介

这是一篇有关如何将大量的数据放入有限的内存中的简略教程。

与客户工作时,有时会发现他们的数据库实际上只是一个csv或Excel文件仓库,你只能将就着用,经常需要在不更新他们的数据仓库的情况下完成工作。大部分情况下,如果将这些文件存储在一个简单的数据库框架中或许更好,但时间可能不允许。这种方法对时间、机器硬件和所处环境都有要求。

下面介绍一个很好的例子:假设有一堆表格(没有使用Neo4j、MongoDB或其他类型的数据库,仅仅使用csvs、tsvs等格式存储的表格),如果将所有表格组合在一起,得到的数据帧太大,无法放入内存。所以第一个想法是:将其拆分成不同的部分,逐个存储。这个方案看起来不错,但处理起来很慢。除非我们使用多核处理器。
目标

这里的目标是从所有职位中(大约1万个),找出相关的的职位。将这些职位与政府给的职位代码组合起来。接着将组合的结果与对应的州(行政单位)信息组合起来。然后用通过word2vec生成的属性信息在我们的客户的管道中增强已有的属性。

这个任务要求在短时间内完成,谁也不愿意等待。想象一下,这就像在不使用标准的关系型数据库的情况下进行多个表的连接。
数据

201541105411439.jpg (1274×406)

示例脚本

下面的是一个示例脚本,展示了如何使用multiprocessing来在有限的内存空间中加速操作过程。脚本的第一部分是和特定任务相关的,可以自由跳过。请着重关注第二部分,这里侧重的是multiprocessing引擎。

#import the necessary packages
import pandas as pd
import us
import numpy as np
from multiprocessing import Pool,cpu_count,Queue,Manager
 
# the data in one particular column was number in the form that horrible excel version
# of a number where '12000' is '12,000' with that beautiful useless comma in there.
# did I mention I excel bothers me?
# instead of converting the number right away, we only convert them when we need to
def median_maker(column):
  return np.median([int(x.replace(',','')) for x in column])
 
# dictionary_of_dataframes contains a dataframe with information for each title; e.g title is 'Data Scientist'
# related_title_score_df is the dataframe of information for the title; columns = ['title','score']
### where title is a similar_title and score is how closely the two are related, e.g. 'Data Analyst', 0.871
# code_title_df contains columns ['code','title']
# oes_data_df is a HUGE dataframe with all of the Bureau of Labor Statistics(BLS) data for a given time period (YAY FREE DATA, BOO BAD CENSUS DATA!)
 
def job_title_location_matcher(title,location):
  try:
    related_title_score_df = dictionary_of_dataframes[title]
    # we limit dataframe1 to only those related_titles that are above
    # a previously established threshold
    related_title_score_df = related_title_score_df[title_score_df['score']>80]
 
    #we merge the related titles with another table and its codes
    codes_relTitles_scores = pd.merge(code_title_df,related_title_score_df)
    codes_relTitles_scores = codes_relTitles_scores.drop_duplicates()
 
    # merge the two dataframes by the codes
    merged_df = pd.merge(codes_relTitles_scores, oes_data_df)
    #limit the BLS data to the state we want
    all_merged = merged_df[merged_df['area_title']==str(us.states.lookup(location).name)]
 
    #calculate some summary statistics for the time we want
    group_med_emp,group_mean,group_pct10,group_pct25,group_median,group_pct75,group_pct90 = all_merged[['tot_emp','a_mean','a_pct10','a_pct25','a_median','a_pct75','a_pct90']].apply(median_maker)
    row = [title,location,group_med_emp,group_mean,group_pct10,group_pct25, group_median, group_pct75, group_pct90]
    #convert it all to strings so we can combine them all when writing to file
    row_string = [str(x) for x in row]
    return row_string
  except:
    # if it doesnt work for a particular title/state just throw it out, there are enough to make this insignificant
    'do nothing'

这里发生了神奇的事情:

#runs the function and puts the answers in the queue
def worker(row, q):
    ans = job_title_location_matcher(row[0],row[1])
    q.put(ans)
 
# this writes to the file while there are still things that could be in the queue
# this allows for multiple processes to write to the same file without blocking eachother
def listener(q):
  f = open(filename,'wb')
  while 1:
    m = q.get()
    if m =='kill':
        break
    f.write(','.join(m) + 'n')
    f.flush()
  f.close()
 
def main():
  #load all your data, then throw out all unnecessary tables/columns
  filename = 'skill_TEST_POOL.txt'
 
  #sets up the necessary multiprocessing tasks
  manager = Manager()
  q = manager.Queue()
  pool = Pool(cpu_count() + 2)
  watcher = pool.map_async(listener,(q,))
 
  jobs = []
  #titles_states is a dataframe of millions of job titles and states they were found in
  for i in titles_states.iloc:
    job = pool.map_async(worker, (i, q))
    jobs.append(job)
 
  for job in jobs:
    job.get()
  q.put('kill')
  pool.close()
  pool.join()
 
if __name__ == "__main__":
  main()

由于每个数据帧的大小都不同(总共约有100Gb),所以将所有数据都放入内存是不可能的。通过将最终的数据帧逐行写入内存,但从来不在内存中存储完整的数据帧。我们可以完成所有的计算和组合任务。这里的“标准方法”是,我们可以仅仅在“job_title_location_matcher”的末尾编写一个“write_line”方法,但这样每次只会处理一个实例。根据我们需要处理的职位/州的数量,这大概需要2天的时间。而通过multiprocessing,只需2个小时。

虽然读者可能接触不到本教程处理的任务环境,但通过multiprocessing,可以突破许多计算机硬件的限制。本例的工作环境是c3.8xl ubuntu ec2,硬件为32核60Gb内存(虽然这个内存很大,但还是无法一次性放入所有数据)。这里的关键之处是我们在60Gb的内存的机器上有效的处理了约100Gb的数据,同时速度提升了约25倍。通过multiprocessing在多核机器上自动处理大规模的进程,可以有效提高机器的利用率。也许有些读者已经知道了这个方法,但对于其他人,可以通过multiprocessing能带来非常大的收益。顺便说一句,这部分是skill assets in the job-market这篇博文的延续。

相关文章

  • Python中字典创建、遍历、添加等实用操作技巧合集

    Python中字典创建、遍历、添加等实用操作技巧合集

    这篇文章主要介绍了Python中字典创建、遍历、添加等实用操作技巧合集,本文讲解了字典中常见方法列表、创建字典的五种方法、字典中键值遍历方法等内容,需要的朋友可以参考下
    2015-06-06
  • PyTorch变分自编码器的构建与应用小结

    PyTorch变分自编码器的构建与应用小结

    变分自编码器是一种强大的深度学习模型,用于学习数据的潜在表示并能生成新的数据点,使用PyTorch实现VAE不仅可以加深对生成模型的理解,还可以利用其灵活性进行各种实验,这篇文章主要介绍了PyTorch变分自编码器的构建与应用,需要的朋友可以参考下
    2024-07-07
  • 详解python深浅拷贝区别

    详解python深浅拷贝区别

    在本篇文章里小编给大家整理了关于python深浅拷贝区别的相关知识点总结,有兴趣的朋友们可以参考下。
    2019-06-06
  • 浅谈Keras中fit()和fit_generator()的区别及其参数的坑

    浅谈Keras中fit()和fit_generator()的区别及其参数的坑

    这篇文章主要介绍了Keras中fit()和fit_generator()的区别及其参数的坑,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2021-05-05
  • 基于Python绘制个人足迹地图

    基于Python绘制个人足迹地图

    这篇文章主要介绍了基于Python绘制个人足迹地图,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-06-06
  • 聊聊Python中的@符号是什么意思

    聊聊Python中的@符号是什么意思

    @符号用做函数的修饰符,可以在模块或者类的定义层内对函数进行修饰,下面这篇文章主要给大家介绍了关于Python中@符号是什么意思的相关资料,需要的朋友可以参考下
    2021-09-09
  • python单向循环链表实例详解

    python单向循环链表实例详解

    这篇文章主要为大家详细介绍了python单向循环链表实例,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2022-05-05
  • Python Flask前端自动登录功能实现详解

    Python Flask前端自动登录功能实现详解

    这篇文章主要介绍了Python Flask前端自动登录功能实现,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2022-10-10
  • Python利用PySimpleGUI实现自制桌面翻译神器

    Python利用PySimpleGUI实现自制桌面翻译神器

    工作上经常需要与外国友人邮件沟通,奈何工作电脑没有安装有道词典一类的翻译软件,结合自己的需要,自己用PySimpleGUI撸一个桌面翻译神器,感兴趣的可以了解一下
    2022-09-09
  • Python利用百度地图获取两地距离(附demo)

    Python利用百度地图获取两地距离(附demo)

    本文主要介绍了Python利用百度地图获取两地距离,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-07-07

最新评论