Python的Django框架中的select_related函数对QuerySet 查询的优化

 更新时间:2015年04月01日 15:11:48   作者:CuGBabyBeaR  
这篇文章主要介绍了Python的Django框架中的select_related函数对QuerySet查询的优化,以减少数据库的查询次数为目的,需要的朋友可以参考下

1. 实例的背景说明

假定一个个人信息系统,需要记录系统中各个人的故乡、居住地、以及到过的城市。数据库设计如下:

201541150650059.jpg (591×250)

Models.py 内容如下:

from django.db import models
 
class Province(models.Model):
  name = models.CharField(max_length=10)
  def __unicode__(self):
    return self.name
 
class City(models.Model):
  name = models.CharField(max_length=5)
  province = models.ForeignKey(Province)
  def __unicode__(self):
    return self.name
 
class Person(models.Model):
  firstname = models.CharField(max_length=10)
  lastname  = models.CharField(max_length=10)
  visitation = models.ManyToManyField(City, related_name = "visitor")
  hometown  = models.ForeignKey(City, related_name = "birth")
  living   = models.ForeignKey(City, related_name = "citizen")
  def __unicode__(self):
    return self.firstname + self.lastname

注1:创建的app名为“QSOptimize”

注2:为了简化起见,`qsoptimize_province` 表中只有2条数据:湖北省和广东省,`qsoptimize_city`表中只有三条数据:武汉市、十堰市和广州市
2. select_related()

对于一对一字段(OneToOneField)和外键字段(ForeignKey),可以使用select_related 来对QuerySet进行优化
作用和方法

在对QuerySet使用select_related()函数后,Django会获取相应外键对应的对象,从而在之后需要的时候不必再查询数据库了。以上例说明,如果我们需要打印数据库中的所有市及其所属省份,最直接的做法是:
 

>>> citys = City.objects.all()
>>> for c in citys:
...  print c.province
...

这样会导致线性的SQL查询,如果对象数量n太多,每个对象中有k个外键字段的话,就会导致n*k+1次SQL查询。在本例中,因为有3个city对象就导致了4次SQL查询:
 

SELECT `QSOptimize_city`.`id`, `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id`
FROM `QSOptimize_city`
 
SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name`
FROM `QSOptimize_province`
WHERE `QSOptimize_province`.`id` = 1 ;
 
SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name`
FROM `QSOptimize_province`
WHERE `QSOptimize_province`.`id` = 2 ;
 
SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name`
FROM `QSOptimize_province`
WHERE `QSOptimize_province`.`id` = 1 ;

注:这里的SQL语句是直接从Django的logger:‘django.db.backends'输出出来的

如果我们使用select_related()函数:
 

>>> citys = City.objects.select_related().all()
>>> for c in citys:
...  print c.province
...

就只有一次SQL查询,显然大大减少了SQL查询的次数:
 

SELECT `QSOptimize_city`.`id`, `QSOptimize_city`.`name`,
`QSOptimize_city`.`province_id`, `QSOptimize_province`.`id`, `QSOptimize_province`.`name`
FROM`QSOptimize_city`
INNER JOIN `QSOptimize_province` ON (`QSOptimize_city`.`province_id` = `QSOptimize_province`.`id`) ;

这里我们可以看到,Django使用了INNER JOIN来获得省份的信息。顺便一提这条SQL查询得到的结果如下:
 

+----+-----------+-------------+----+-----------+
| id | name   | province_id | id | name   |
+----+-----------+-------------+----+-----------+
| 1 | 武汉市  |      1 | 1 | 湖北省  |
| 2 | 广州市  |      2 | 2 | 广东省  |
| 3 | 十堰市  |      1 | 1 | 湖北省  |
+----+-----------+-------------+----+-----------+
3 rows in set (0.00 sec)

 
使用方法
函数支持如下三种用法:
*fields 参数

select_related() 接受可变长参数,每个参数是需要获取的外键(父表的内容)的字段名,以及外键的外键的字段名、外键的外键的外键…。若要选择外键的外键需要使用两个下划线“__”来连接。

例如我们要获得张三的现居省份,可以用如下方式:
 

>>> zhangs = Person.objects.select_related('living__province').get(firstname=u"张",lastname=u"三")
>>> zhangs.living.province

触发的SQL查询如下:
 

SELECT `QSOptimize_person`.`id`, `QSOptimize_person`.`firstname`,
`QSOptimize_person`.`lastname`, `QSOptimize_person`.`hometown_id`, `QSOptimize_person`.`living_id`,
`QSOptimize_city`.`id`, `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id`, `QSOptimize_province`.`id`,
`QSOptimize_province`.`name`
FROM `QSOptimize_person`
INNER JOIN `QSOptimize_city` ON (`QSOptimize_person`.`living_id` = `QSOptimize_city`.`id`)
INNER JOIN `QSOptimize_province` ON (`QSOptimize_city`.`province_id` = `QSOptimize_province`.`id`)
WHERE (`QSOptimize_person`.`lastname` = '三' AND `QSOptimize_person`.`firstname` = '张' );

可以看到,Django使用了2次 INNER JOIN 来完成请求,获得了city表和province表的内容并添加到结果表的相应列,这样在调用 zhangs.living的时候也不必再次进行SQL查询。
 

+----+-----------+----------+-------------+-----------+----+-----------+-------------+----+-----------+
| id | firstname | lastname | hometown_id | living_id | id | name   | province_id | id | name   |
+----+-----------+----------+-------------+-----------+----+-----------+-------------+----+-----------+
| 1 | 张    | 三    |      3 |     1 | 1 | 武汉市  |  1     | 1 | 湖北省  |
+----+-----------+----------+-------------+-----------+----+-----------+-------------+----+-----------+
1 row in set (0.00 sec)

然而,未指定的外键则不会被添加到结果中。这时候如果需要获取张三的故乡就会进行SQL查询了:
 

>>> zhangs.hometown.province
 
SELECT `QSOptimize_city`.`id`, `QSOptimize_city`.`name`,
`QSOptimize_city`.`province_id`
FROM `QSOptimize_city`
WHERE `QSOptimize_city`.`id` = 3 ;
 
SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name`
FROM `QSOptimize_province`
WHERE `QSOptimize_province`.`id` = 1

同时,如果不指定外键,就会进行两次查询。如果深度更深,查询的次数更多。

值得一提的是,从Django 1.7开始,select_related()函数的作用方式改变了。在本例中,如果要同时获得张三的故乡和现居地的省份,在1.7以前你只能这样做:
 

>>> zhangs = Person.objects.select_related('hometown__province','living__province').get(firstname=u"张",lastname=u"三")
>>> zhangs.hometown.province
>>> zhangs.living.province

但是1.7及以上版本,你可以像和queryset的其他函数一样进行链式操作:
 

>>> zhangs = Person.objects.select_related('hometown__province').select_related('living__province').get(firstname=u"张",lastname=u"三")
>>> zhangs.hometown.province
>>> zhangs.living.province

如果你在1.7以下版本这样做了,你只会获得最后一个操作的结果,在本例中就是只有现居地而没有故乡。在你打印故乡省份的时候就会造成两次SQL查询。
depth 参数

select_related() 接受depth参数,depth参数可以确定select_related的深度。Django会递归遍历指定深度内的所有的OneToOneField和ForeignKey。以本例说明:
 

>>> zhangs = Person.objects.select_related(depth = d)

d=1  相当于 select_related(‘hometown','living')

d=2  相当于 select_related(‘hometown__province','living__province')
无参数

select_related() 也可以不加参数,这样表示要求Django尽可能深的select_related。例如:zhangs = Person.objects.select_related().get(firstname=u”张”,lastname=u”三”)。但要注意两点:

    Django本身内置一个上限,对于特别复杂的表关系,Django可能在你不知道的某处跳出递归,从而与你想的做法不一样。具体限制是怎么工作的我表示不清楚。
    Django并不知道你实际要用的字段有哪些,所以会把所有的字段都抓进来,从而会造成不必要的浪费而影响性能。

 
小结

  1.     select_related主要针一对一和多对一关系进行优化。
  2.     select_related使用SQL的JOIN语句进行优化,通过减少SQL查询的次数来进行优化、提高性能。
  3.     可以通过可变长参数指定需要select_related的字段名。也可以通过使用双下划线“__”连接字段名来实现指定的递归查询。没有指定的字段不会缓存,没有指定的深度不会缓存,如果要访问的话Django会再次进行SQL查询。
  4.     也可以通过depth参数指定递归的深度,Django会自动缓存指定深度内所有的字段。如果要访问指定深度外的字段,Django会再次进行SQL查询。
  5.     也接受无参数的调用,Django会尽可能深的递归查询所有的字段。但注意有Django递归的限制和性能的浪费。
  6.     Django >= 1.7,链式调用的select_related相当于使用可变长参数。Django < 1.7,链式调用会导致前边的select_related失效,只保留最后一个。


相关文章

  • python:目标检测模型预测准确度计算方式(基于IoU)

    python:目标检测模型预测准确度计算方式(基于IoU)

    今天小编就为大家分享一篇python:目标检测模型预测准确度计算方式(基于IoU),具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-01-01
  • 安装Pycharm2019以及配置anconda教程的方法步骤

    安装Pycharm2019以及配置anconda教程的方法步骤

    这篇文章主要介绍了安装Pycharm2019以及配置anconda教程的方法步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-11-11
  • 如何在python字符串中输入纯粹的{}

    如何在python字符串中输入纯粹的{}

    这篇文章主要介绍了如何在python字符串中输入纯粹的{}以及python字符串连接的三种方法,需要的朋友可以参考下
    2018-08-08
  • pytorch 加载(.pth)格式的模型实例

    pytorch 加载(.pth)格式的模型实例

    今天小编就为大家分享一篇pytorch 加载(.pth)格式的模型实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-08-08
  • 在Django的模型中执行原始SQL查询的方法

    在Django的模型中执行原始SQL查询的方法

    这篇文章主要介绍了在Django的模型中执行原始SQL查询的方法,Django是最具人气的Python web开发框架,需要的朋友可以参考下
    2015-07-07
  • pytorch学习教程之自定义数据集

    pytorch学习教程之自定义数据集

    这篇文章主要给大家介绍了关于pytorch学习教程之自定义数据集的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-11-11
  • 浅谈tf.train.Saver()与tf.train.import_meta_graph的要点

    浅谈tf.train.Saver()与tf.train.import_meta_graph的要点

    这篇文章主要介绍了浅谈tf.train.Saver() 与tf.train.import_meta_graph的要点,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2021-05-05
  • pandas中read_csv、rolling、expanding用法详解

    pandas中read_csv、rolling、expanding用法详解

    这篇文章主要介绍了pandas中read_csv、rolling、expanding用法详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-04-04
  • django中使用事务及接入支付宝支付功能

    django中使用事务及接入支付宝支付功能

    这篇文章主要介绍了django中使用事务以及接入支付宝支付功能,本文通过实例代码给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
    2019-09-09
  • 教你使用Python获取QQ音乐某个歌手的歌单

    教你使用Python获取QQ音乐某个歌手的歌单

    这篇文章主要介绍了Python获取QQ音乐某个歌手的歌单,从qq音乐中获取某个你喜欢的歌手的清单,涉及到的库有requests、json,本文结合示例代码给大家介绍的非常详细,需要的朋友可以参考下
    2022-04-04

最新评论