在MAC上搭建python数据分析开发环境
最近工作转型到数据开发领域,想在本地搭建一个数据开发环境。自己有三年python开发经验,马上想到使用numpy、scipy、sklearn、pandas搭建一套数据开发环境。
ubuntu的环境,百度中文章比较多,搭建起来非常顺利。MAC环境的资料比较少,百度出来的,已经不对了,那我就来补充一篇吧。
MAC自带python,python的安装我就不多说了。
安装pip
我喜欢用pip安装python库,非常方便,pip的安装只能用源码了。
#下载源代码 https://pypi.python.org/pypi/pip 我去下载的时候是 8.0.2版本 #解压 tar xvzf pip8.0.2.tar.gz #安装 cd pip-1.4.1 python setup.py install
安装numpy
numpy是基础,是scipy等其它库等基础,没什么依赖,安装起来相对简单。
pip install numpy
安装brew
numpy安装之后,就是安装scipy了,为什么插了一竿子呢?它依赖fortran库,fortran库的安装需要用到MAC的包管理工具homebrew
#下载brew curl -LsSf http://github.com/mxcl/homebrew/tarball/master sudo tar xvz -C/usr/local --strip 1
安装scipy
scipy 是sklearn的基础,但它依赖gfortran库,gfortran已经融入到gcc库中,安装gcc就好了,有了brew安装什么包都变得非常简单了。
#安装gcc库 brew install gcc #安装scipy pip install scipy 后面的安装,就按步就班了 #安装matplotlib,方便把数据绘图显示出来 pip install matplotlib #安装sklearn,我理解这个安装必须在pandas之前 pip install -U numpy scipy scikit-learn #安装pandas pip install pandas
到这里环境就搭建好了,开搞吧,其实搭起来也非常简单。提醒下,安装时注意权限,如果需要权限就在前面加个sudo。
相关文章
python实现sm2和sm4国密(国家商用密码)算法的示例
这篇文章主要介绍了python实现sm2和sm4国密(国家商用密码)算法的示例,帮助大家使用python加密文件,感兴趣的朋友可以了解下2020-09-09计算pytorch标准化(Normalize)所需要数据集的均值和方差实例
今天小编就为大家分享一篇计算pytorch标准化(Normalize)所需要数据集的均值和方差实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧2020-01-01
最新评论