MongoDB查询性能优化验证及验证

 更新时间:2016年02月26日 09:47:28   作者:ITeye  
这篇文章主要介绍了MongoDB查询性能验证及优化的相关知识,涉及到MongoDB 查询优化原则知识点,本文介绍的非常详细,具有参考借鉴价值,感兴趣的朋友一起学习吧

结论:

1、 200w数据,合理使用索引的情况下,单个stationId下4w数据。mongodb查询和排序的性能理想,无正则时client可以在600ms+完成查询,qps300+。有正则时client可以在1300ms+完成查询,qps140+。

2、 Mongodb的count性能比较差,非并发情况下client可以在330ms完成查询,在并发情况下则需要1-3s。可以考虑估算总数的方法,http://blog.sina.com.cn/s/blog_56545fd30101442b.html

测试环境:mongodb使用 replica set,1主2从,96G内存,版本2.6.5

Mem消耗(4个200w数据的collection):


空间消耗(测试数据最终选定的collection):


Jvm: -Xms2G -Xmx2G

Ping延迟33ms

查询都使用ReadPreference.secondaryPreferred()

无正则

1、 创建stationId, firmId复合引查询场景(200w集合,12个字段)

查询次数:20000

查询条件:多条件查询10条记录,并逐条获取记录

String key = "清泉" + r.nextInt(1000);
Pattern pattern = Pattern.compile(key);
BasicDBObject queryObject = new BasicDBObject("stationId",
new BasicDBObject("$in", new Integer[]{20}))
.append("firmId", new BasicDBObject("$gt", 5000))
.append("dealCount", new BasicDBObject("$gt", r.nextInt(1000000))); DBCursor cursor = collection.find(queryObject).limit(10).skip(2);

并发:200

耗时:61566

单次耗时(server):124ms

Qps:324.85

2、 创建stationId, firmId复合引查询场景(200w集合,12个字段)

查询次数:20000

查询条件:多条件查询10条记录排序,并逐条获取记录

String key = "清泉" + r.nextInt(100);
Pattern pattern = Pattern.compile(key);
BasicDBObject queryObject = new BasicDBObject("stationId",
new BasicDBObject("$in", new Integer[]{4, 20}))
.append("firmId", new BasicDBObject("$gt", 5000))
.append("dealCount", new BasicDBObject("$gt", r.nextInt(1000000))); DBCursor cursor = collection.find(queryObject)
.sort(new BasicDBObject("firmId", 1)).limit(10).skip(2);

并发:200

耗时:63187

单次耗时(server):119ms

Qps:316.52

3、 创建stationId, firmId复合引查询场景(200w集合,12个字段)

查询次数:2000

查询条件:多条件查询记录数

String key = "清泉" + r.nextInt(100);
Pattern pattern = Pattern.compile(key);
BasicDBObject queryObject = new BasicDBObject("stationId",
new BasicDBObject("$in", new Integer[]{4, 20}))
.append("firmId", new BasicDBObject("$gt", 5000))
.append("dealCount", new BasicDBObject("$gt", r.nextInt(1000000))); 
long count = collection.count(queryObject);

并发:200

耗时:21887

单次耗时(client):280ms

Qps:91.38

有正则

4、 创建stationId, firmId复合引查询场景(200w集合,12个字段)

查询次数:20000

查询条件:多条件查询10条记录,并逐条获取记录

String key = "清泉" + r.nextInt(1000);
Pattern pattern = Pattern.compile(key);
BasicDBObject queryObject = new BasicDBObject("stationId",
new BasicDBObject("$in", new Integer[]{20}))
.append("firmId", new BasicDBObject("$gt", 5000))
.append ("dealCount", new BasicDBObject("$gt", r.nextInt(1000000)))
.append("firmName", pattern);
DBCursor cursor = collection.find(queryObject).limit(10).skip(2);

并发:200

耗时:137673

单次耗时(server):225ms

Qps:145.27

5、 创建stationId, firmId复合引查询场景(200w集合,12个字段)

查询次数:20000

查询条件:多条件查询10条记录排序,并逐条获取记录

String key = "清泉" + r.nextInt(1000);
Pattern pattern = Pattern.compile(key);
BasicDBObject queryObject = new BasicDBObject("stationId",
new BasicDBObject("$in", new Integer[]{4, 20}))
.append("firmId", new BasicDBObject("$gt", 5000))
.append ("dealCount", new BasicDBObject("$gt", r.nextInt(1000000)))
.append("firmName", pattern);
DBCursor cursor = collection.find(queryObject)
.sort(new BasicDBObject("firmId", 1)).limit(10).skip(2);

并发:200

耗时:138673

单次耗时(server):230ms

Qps:144.22

6、 创建stationId, firmId复合引查询场景(200w集合,12个字段)

查询次数:2000

查询条件:多条件查询记录数

String key = "清泉" + r.nextInt(1000);
Pattern pattern = Pattern.compile(key);
BasicDBObject queryObject = new BasicDBObject("stationId",
new BasicDBObject("$in", new Integer[]{4, 20}))
.append("firmId", new BasicDBObject("$gt", 5000))
.append ("dealCount", new BasicDBObject("$gt", r.nextInt(1000000)))
.append("firmName", pattern);
long count = collection.count(queryObject);

并发:200

耗时:23155

单次耗时(client):330ms

Qps:86.37

MongoDB索引特点

1、 复合索引必须命中首字段,否则无法生效。后面的字段可以不按顺序命中。

2、 复合索引字段越多占用空间越大,但对查询性能影响不大(数组索引除外)。

3、 会根据sort字段选择索引,优先级超过复合索引中的非首字段。


4、 命中复合索引的情况下,数据量<10w的情况下,过滤非索引字段,效率也比较高。


5、 全文检索性能比较差,200w数据命中50w的情况下,全文检索需要10+s,正则需要1s。

MongoDB客户端配置,可以提出来做成spring注入,设置最大连接数什么的。

MongoClientOptions options =
MongoClientOptions.builder().maxWaitTime(1000 * 60 * 2)
.connectionsPerHost(500).build();
mongoClient = new MongoClient(Arrays.asList(new ServerAddress("10.205.68.57", 8700),
new ServerAddress("10.205.68.15", 8700),
new ServerAddress("10.205.69.13", 8700)), options);
mongoClient.setReadPreference(ReadPreference.secondaryPreferred());

mongoDB调研_结论.docx为最终场景下的测试数据,分为有正则和无正则。

mongoDB调研_remote.docx为测试验证过程中的数据,有可能存在缓存等情况,不一定准确,功参考。

关于MongoDB 查询优化原则的大家了解吗?下文给大家介绍下,具体内容如下所示:

1.在查询条件、排序条件、统计条件的字段上选择创建索引,可以显著提高查询效率。

2.用$or时把匹配最多结果的条件放在最前面,用$and时把匹配最 少 结果的条件放在最前面。

3.使用limit()限定返回结果集的大小,减少数据库服务器的资源消耗,以及网络传输的数据量。

4.尽量少用$in,而是分解成一个一个的单一查询。尤其是在分片上,$in会让你的查询去每一个分片上查一次,如果实在要用的话,先在每个分片上建索引。

5.尽量不用模糊匹配查询,用其它精确匹配查询代替,比如$in、$nin。

6.查询量大、并发大的情况,通过前端加缓存解决。

7.能不用安全模式的操作就不用安全模式,这样客户端没必要等待数据库返回查询结果以及处理异常,快了一个数量级。

8.MongoDB的智能查询优化,判断粒度为query条件,而skip和limit都不在其判断之中,当分页查询最后几页时,先用order反向排序。

9.尽量减少跨分片查询,balance均衡次数少。

10.只查询要使用的字段,而不查询所有字段。

11.更新字段的值时,使用$inc比update效率高。

12.apped collections比普通collections的读写效率高。

13.server-side processing类似于SQL查询的存储过程,可以减少网络通讯的开销。

14.必要时使用hint()强制使用某个索引查询。

15.如果有自己的主键列,则使用自己的主键列作为id,这样可以节约空间,也不需要创建额外的所以。

16.使用explain,根据exlpain plan进行优化。

17.范围查询的时候尽量用$in、$nin代替。

18.查看数据库查询日志,具体分析的效率低的操作。

19.mongodb有一个数据库优化工具database profiler,能够检测数据库操作的性能。可以发现query或者write操作中执行效率低的,从而针对这些操作进行优化。

20.尽量把更多的操作放在客户端,当然这就是mongodb设计的理念之一。

相关文章

  • 详解MongoDB4.0构建分布式分片群集

    详解MongoDB4.0构建分布式分片群集

    这篇文章主要介绍了详解MongoDB4.0构建分布式分片群集,详细的介绍了什么是MongoDB分片和具体使用,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2018-08-08
  • windows下mongodb安装与使用图文教程(整理)

    windows下mongodb安装与使用图文教程(整理)

    这篇文章主要介绍了windows下mongodb安装与使用图文教程(整理)的相关资料,需要的朋友可以参考下
    2016-06-06
  • MongoDB按时间分组操作实战

    MongoDB按时间分组操作实战

    MongoDB支持使用聚合操作来统计数据,下面这篇文章主要给大家介绍了关于MongoDB按时间分组操作的相关资料,文中通过实例代码介绍的非常详细,需要的朋友可以参考下
    2023-05-05
  • 使用mongoose和bcrypt实现用户密码加密的示例

    使用mongoose和bcrypt实现用户密码加密的示例

    下面小编就为大家分享一篇使用mongoose和bcrypt实现用户密码加密的示例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-02-02
  • window下mongodb在dos下服务器启动及连接

    window下mongodb在dos下服务器启动及连接

    这篇文章主要介绍了window下mongodb在dos下服务器启动及连接的相关资料,需要的朋友可以参考下
    2017-06-06
  • MongoDB游标超时问题的4种解决方法

    MongoDB游标超时问题的4种解决方法

    这篇文章主要给大家介绍了关于MongoDB游标超时问题的4种解决方法,文中通过示例代码介绍的非常详细,对大家学习或者使用MongoDB具有一定的参考学习价值,需要的朋友们下面来一起学习学习吧
    2019-09-09
  • MongoDB中UPDATE操作$pullAll的方法

    MongoDB中UPDATE操作$pullAll的方法

    与$pull有所不同,$pull操作通过指定一个查询条件或单个值来删除数组中的元素, 而$pullAll删除所有在指定列表中的数组元素,本文介绍Mongodb UPDATE操作中的$pullAll, 用来从数组中删除多个元素,感兴趣的朋友一起看看吧
    2024-06-06
  • 给MongoDB添加用户权限方法分享

    给MongoDB添加用户权限方法分享

    这篇文章主要介绍了给MongoDB添加用户权限方法分享,十分的细致全面,推荐给大家,有需要的小伙伴可以参考下。
    2015-03-03
  • MongoDB学习笔记之MapReduce使用示例

    MongoDB学习笔记之MapReduce使用示例

    这篇文章主要介绍了MongoDB学习笔记之MapReduce使用示例,本文直接给出实例代码,需要的朋友可以参考下
    2015-07-07
  • 关于MongoDB索引管理-索引的创建、查看、删除操作详解

    关于MongoDB索引管理-索引的创建、查看、删除操作详解

    本文讲述了关于MongoDB索引管理包括索引的创建、查看索引、删除索引各方面的命令及使用方法
    2018-03-03

最新评论