解读堆排序算法及用C++实现基于最大堆的堆排序示例
1、堆排序定义
n个关键字序列Kl,K2,…,Kn称为堆,当且仅当该序列满足如下性质(简称为堆性质):
(1) ki≤K2i且ki≤K2i+1 或(2)Ki≥K2i且ki≥K2i+1(1≤i≤ )
若将此序列所存储的向量R[1..n]看做是一棵完全二叉树的存储结构,则堆实质上是满足如下性质的完全二叉树:树中任一非叶结点的关键字均不大于(或不小于)其左右孩子(若存在)结点的关键字。
【例】关键字序列(10,15,56,25,30,70)和(70,56,30,25,15,10)分别满足堆性质(1)和(2),故它们均是堆,其对应的完全二叉树分别如最小堆示例和最大堆示例所示。
堆排序算法
2、最大堆和最小堆
(1)根结点(亦称为堆顶)的关键字是堆里所有结点关键字中最小者的堆称为最小堆。
(2)结点(亦称为堆顶)的关键字是堆里所有结点关键字中最大者,称为最大堆。
注意:
(1)堆中任一子树亦是堆。
(2)以上讨论的堆实际上是二叉堆(Binary Heap),类似地可定义k叉堆。
3、堆排序的基本思路如下:
(1)把待排序数组构造成一个最大堆
(2)取出树的根(最大(小)值, 实际算法的实现并不是真正的取出)
(3)将树中剩下的元素再构造成一个最大堆(这里的构造和第1步不一样,具体看实现部分)
(4)重复2,3操作,直到取完所有的元素
(5)把元素按取出的顺序排列,即得到一个有序数组(在代码实现里是通过交换操作"无形中"完成的)
在开始实现算法先看几个结论(证明略):
(1)完全二叉树A[0:n-1]中的任意节点,其下标为 ii, 那么其子节点的下标分别是为2i+12i+1 和 2(i+1)2(i+1)
(2)大小为n的完全二叉树A[0:n-1],叶子节点中下标最小的是⌊n2⌋⌊n2⌋, 非叶子节点中下标最大的是⌊n2⌋−1⌊n2⌋−1
(3)如果数组是一个最大堆,那么最大元素就是A[0]
(4)最大堆中任意节点的左右子树也是最大堆
4、实现示例
这里的算法实现使用的是最大堆,首先来解决由数组建立最大堆的问题:
// 用于计算下标为i的节点的两个子节点的下标值 #define LEFT(i) (2 * (i) + 1) #define RIGHT(i) (2 * ((i) + 1)) /* 此函数把一颗二叉树中以node为根的子树变成最大堆。 * 注意: 使用的前提条件是 node节点的左右子树(如果存在的话)都是最大堆。 * 这个函数是整个算法的关键。 */ void max_heapify(int heap[], int heap_size, int node) { // 这里先不考虑整数溢出的问题 // 先把注意力放在主要的功能上 // 如果数据规模够大,int类型必然会溢出 int l_child = LEFT(node); int r_child = RIGHT(node); int max_value = node; if (l_child < heap_size && heap[l_child] > heap[max_value]) { max_value = l_child; } if (r_child < heap_size && heap[r_child] > heap[max_value]) { max_value = r_child; } if (max_value != node) { swap_val(heap + node, heap + max_value); // 之后还要保证被交换的子节点构成的子树仍然是最大堆 // 如果不是这个节点会继续"下沉",直到合适的位置 max_heapify(heap, heap_size, max_value); } } /* 将一个数组构造成最大堆 * 自底向上的利用max_heapify函数处理 */ void build_max_heap(int heap[], int heap_size) { if (heap_size < 2) { return; } int first_leaf = heap_size >> 1;//第一个叶子节点的下标 int i; // 从最后一个非叶子节点开始自底向上构建, // 叶子节点都看作最大堆,因此可以使用max_heapify函数 for (i = first_leaf - 1; i >= 0; i--) { max_heapify(heap, heap_size, i); } }
函数max_heapify将指定子树的根节点"下沉"到合适的位置, 最终子树变成最大堆, 该过程最坏时间复杂度为O(logn)O(logn)。函数build_max_heap自底向上的调用max_heapify, 最终整个数组满足最大堆,迭代过程的复杂度为O(nlogn)O(nlogn), 因此整个函数的最坏时间复杂度也是O(nlogn)O(nlogn)。 而如果当前数组已经是最大堆了,例如数组原本是降序排列的, 那么max_heapify过程的时间复杂度就是O(1)O(1), 此时build_max_heap的时间复杂度是O(n)O(n),这是最好的情况。
接着实现堆排序过程:
/* heap sort 主函数 */ void heap_sort(int heap[], int heap_size) { if (heap == NULL || heap_size < 2) { return; } //构建最大堆 build_max_heap(heap, heap_size); int i; for (i = heap_size - 1; i > 0; i--) { /* 把当前树的根节点交换到末尾 * 相当于取出最大值,树的规模变小。 * 交换后的树不是最大堆,但是根的两颗子树依然是最大堆 * 满足调用max_heapify的条件。之所以这样交换, * 是因为用max_heapify处理时间复杂度较低, * 如果不交换而直接"取出"heap[0], 此处可能要使用 * build_max_heap重新建立最大堆,时间复杂度较大 */ swap_val(heap, heap + i); heap_size--; //维护最大堆 max_heapify(heap, heap_size, 0); } }
最终的堆排序算法中,build_max_heap的复杂度是已知的, 迭代部分和build_max_heap的实现类似,而且不难看出, 交换后的根元素在下一次建堆过程中必然下沉到堆底,因此无论情况好坏, 该迭代过程时间复杂度都是O(nlogn)O(nlogn), 所以整个算法的最好最坏和平均时间复杂度都是O(nlogn)O(nlogn)。
堆排序算法的空间复杂度是O(1)O(1),从实现上很容易看出来。
相关文章
使用UART与PC通信实现msp430g2553单片机超声波测距示例
这篇文章主要介绍了使用UART与PC通信实现msp430g2553单片机超声波测距示例,需要的朋友可以参考下2014-05-05
最新评论