DSP中浮点转定点运算--浮点数的存储格式
二:浮点数的存储格式
2.1 IEEE floating point standard
上面我们说了,浮点数的小数点是不固定的,如果每个人都按照自己的爱好存储在电脑里,那不就乱套了吗?那么怎么在计算机中存储这种类型的数字呢?象这类古老的问题前人早都为我们做好了相应的规范,无规矩不成方圆吗。我们平时所说的浮点数的存储规范,就是由IEEE指定的,具体的规范文件是:IEEE Standard 754 for Binary Floating-Point Arithmetic。大家可以很容易的从网络上下载到这篇文档。
在c语言中,单精度(float)数据类型为32bits,具体的如下图所示:
整个32bits分三部分,即
Sign:符号位,1 bit,0为正,1为负;
Exponent(bias):指数部分,8 bits,存储格式为移码存储(后面还会说明),偏移量为127;
Mantissa(fraction):尾数部分。
对应的双精度(double)类型的格式为:
同样,64位也被分为了三部分,对照单精度,不用我说就可以理解各个部分的含义了吧?
是不是有点迷糊了,不要怕,理论这个东西最能忽悠人了,看起来很高深,其实也就是个屁大的事,举个例子就很容易明白了。
举例说明,如3.24x103,则对应的部分为,Sign为0,3为指数部分(注意计算机里面存储的不是3,这里仅仅为了说明),3.24为尾数。我们知道,计算机“笨”的要死,只认识0和1,那么到底一个浮点数值在计算机存储介质中是如何存储的呢?
例如,我们要想偷窥浮点类型的值4.25在计算机硬盘中存储的庐山真面目,请跟我来:首先把4.25转换成二进制的表达方式,即100.01,在详细点,变成1.0001x22,好了,对号入座把。
Sign=0;
Exponent(bias)=2+127=129 (偏移量为127,就是直接加上个127了);
Mantissa=1.0001-1.0=0001(规格化后,小数点前总是整数1,全世界人都知道前面是1不是0,所以省略不写了,即尾数部分不包括整数部分;当别人问你,为什么23 bit的尾数部分可以表示24位的精度,知道怎么回答了吧。 靠,什么,没有看懂,再仔细读两便就知道了)。
对照上面的图示,相信你已经看明白了吧?相信你的智商。为了加深认识,再来一个。如果给定你一个二进制数字串,01000000100010000000000000000000,并告诉你这是一个float类型的值,让你说出它是老几,知道怎么算了吧?如果不知道,看下面的图,我就不废话解释了。
2.2深入理解浮点存储格式
为了更深入的理解浮点数的格式。我们使用C语言来做一件事。在C语言的世界里,强制类型转换,大家应该都很熟悉了。例如:
float f=4.6;
int i;
…
i = (int)(f+0.5); // i=5
..
下面我们不使用强制类型转化,我们自己来计算f转换成整形应该等于几?
把主要代码帖出来,如下:
int ival= ((*(int *)(&fval)) & 0x07fffff) | 0x800000;
// 提取指数部分
int exponent = 150 - (((*(int *)(&fval)) >> 23) & 0xff);
if (exponent < 0)
ival = (ival<< -exponent);
else
ival = (ival >> exponent);
// 如果小于0,则将结果取反
if ((*(int *)&fval) & 0x80000000)
ival = -ival;
好好琢磨琢磨吧,看明白了,就说明你基本明白了浮点数的存储格式,如果没有看明白,接着看,知道明白为止。
以上就是本文的全部内容,希望能给大家一个参考,也希望大家多多支持脚本之家。
最新评论