详解Python中heapq模块的用法

 更新时间:2016年06月28日 17:39:47   作者:cangmean  
Python中的heapq模块提供了一种堆队列heapq类型,这样实现堆排序等算法便相当方便,这里我们就来详解Python中heapq模块的用法,需要的朋友可以参考下

heapq 模块提供了堆算法。heapq是一种子节点和父节点排序的树形数据结构。这个模块提供heap[k] <= heap[2*k+1] and heap[k] <= heap[2*k+2]。为了比较不存在的元素被人为是无限大的。heap最小的元素总是[0]。

打印 heapq 类型

import math 
import random
from cStringIO import StringIO

def show_tree(tree, total_width=36, fill=' '):
   output = StringIO()
   last_row = -1
   for i, n in enumerate(tree):
     if i:
       row = int(math.floor(math.log(i+1, 2)))
     else:
       row = 0
     if row != last_row:
       output.write('\n')
     columns = 2**row
     col_width = int(math.floor((total_width * 1.0) / columns))
     output.write(str(n).center(col_width, fill))
     last_row = row
   print output.getvalue()
   print '-' * total_width
   print 
   return

data = random.sample(range(1,8), 7)
print 'data: ', data
show_tree(data)

打印结果

data: [3, 2, 6, 5, 4, 7, 1]

     3           
  2      6      
5    4  7     1   
-------------------------
heapq.heappush(heap, item)

push一个元素到heap里, 修改上面的代码

heap = []
data = random.sample(range(1,8), 7)
print 'data: ', data

for i in data:
  print 'add %3d:' % i
  heapq.heappush(heap, i)
  show_tree(heap)

打印结果

data: [6, 1, 5, 4, 3, 7, 2]
add  6:
         6         
 ------------------------------------
add  1:
      1 
   6         
------------------------------------
add  5:
      1 
   6       5       
------------------------------------
add  4:
        1 
    4       5       
  6
------------------------------------
add  3:
        1 
    3       5       
  6    4
------------------------------------
add  7:
        1 
    3        5       
  6    4    7
------------------------------------
add  2:
        1 
    3        2       
  6    4    7    5
------------------------------------

根据结果可以了解,子节点的元素大于父节点元素。而兄弟节点则不会排序。

heapq.heapify(list)

将list类型转化为heap, 在线性时间内, 重新排列列表。

print 'data: ', data
heapq.heapify(data)
print 'data: ', data

show_tree(data)

打印结果

data: [2, 7, 4, 3, 6, 5, 1]
data: [1, 3, 2, 7, 6, 5, 4]

      1         
   3         2     
7    6    5    4  
------------------------------------
heapq.heappop(heap)

删除并返回堆中最小的元素, 通过heapify() 和heappop()来排序。

data = random.sample(range(1, 8), 7)
print 'data: ', data
heapq.heapify(data)
show_tree(data)

heap = []
while data:
  i = heapq.heappop(data)
  print 'pop %3d:' % i
  show_tree(data)
  heap.append(i)
print 'heap: ', heap

打印结果

data: [4, 1, 3, 7, 5, 6, 2]

         1
    4         2
  7    5    6    3
------------------------------------

pop  1:
         2
    4         3
  7    5    6
------------------------------------
pop  2:
         3
    4         6
  7    5
------------------------------------
pop  3:
         4
    5         6
  7
------------------------------------
pop  4:
         5
    7         6
------------------------------------
pop  5:
         6
    7
------------------------------------
pop  6:
        7
------------------------------------
pop  7:

------------------------------------
heap: [1, 2, 3, 4, 5, 6, 7]

可以看到已排好序的heap。

heapq.heapreplace(iterable, n)

删除现有元素并将其替换为一个新值。

data = random.sample(range(1, 8), 7)
print 'data: ', data
heapq.heapify(data)
show_tree(data)

for n in [8, 9, 10]:
  smallest = heapq.heapreplace(data, n)
  print 'replace %2d with %2d:' % (smallest, n)
  show_tree(data)

打印结果

data: [7, 5, 4, 2, 6, 3, 1]

         1
    2         3
  5    6    7    4
------------------------------------

replace 1 with 8:

         2
    5         3
  8    6    7    4
------------------------------------

replace 2 with 9:

         3
    5         4
  8    6    7    9
------------------------------------

replace 3 with 10:

         4
    5         7
  8    6    10    9
------------------------------------

heapq.nlargest(n, iterable) 和 heapq.nsmallest(n, iterable)

返回列表中的n个最大值和最小值

data = range(1,6)
l = heapq.nlargest(3, data)
print l     # [5, 4, 3]

s = heapq.nsmallest(3, data)
print s     # [1, 2, 3]

PS:一个计算题
构建元素个数为 K=5 的最小堆代码实例:

#!/usr/bin/env python 
# -*- encoding: utf-8 -*- 
# Author: kentzhan 
# 
 
import heapq 
import random 
 
heap = [] 
heapq.heapify(heap) 
for i in range(15): 
 item = random.randint(10, 100) 
 print "comeing ", item, 
 if len(heap) >= 5: 
  top_item = heap[0] # smallest in heap 
  if top_item < item: # min heap 
   top_item = heapq.heappop(heap) 
   print "pop", top_item, 
   heapq.heappush(heap, item) 
   print "push", item, 
 else: 
  heapq.heappush(heap, item) 
  print "push", item, 
 pass 
 print heap 
pass 
print heap 
 
print "sort" 
heap.sort() 
 
print heap 

结果:

2016628172708102.png (550×363)

相关文章

  • Python yield的使用详解

    Python yield的使用详解

    您可能听说过,带有 yield 的函数在 Python 中被称之为、generator(生成器),何谓 generator ?我们先抛开 generator,以一个常见的编程题目来展示 yield 的概念
    2021-10-10
  • Python实现在某个数组中查找一个值的算法示例

    Python实现在某个数组中查找一个值的算法示例

    今天小编就为大家分享一篇Python实现在某个数组中查找一个值的算法示例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-06-06
  • Python入门教程(二十)Python的Lambda表达式

    Python入门教程(二十)Python的Lambda表达式

    这篇文章主要介绍了Python入门教程(二十)Python的Lambda表达式,lambda表达式是一行的函数。它们在其他语言中也被称为匿名函数,lambda表达式非常有用,可以让代码简单,简洁,需要的朋友可以参考下
    2023-04-04
  • 如何通过Python3和ssl实现加密通信功能

    如何通过Python3和ssl实现加密通信功能

    这篇文章主要介绍了如何通过Python3和ssl实现加密通信功能,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-05-05
  • python使用matplotlib模块绘制多条折线图、散点图

    python使用matplotlib模块绘制多条折线图、散点图

    这篇文章主要为大家详细介绍了python使用matplotlib模块绘制多条折线图、散点图的方法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-09-09
  • 详解Numpy扩充矩阵维度(np.expand_dims, np.newaxis)和删除维度(np.squeeze)的方法

    详解Numpy扩充矩阵维度(np.expand_dims, np.newaxis)和删除维度(np.squeeze)的方

    这篇文章主要介绍了详解Numpy扩充矩阵维度(np.expand_dims, np.newaxis)和删除维度(np.squeeze)的方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-03-03
  • 更改Python命令行交互提示符的方法

    更改Python命令行交互提示符的方法

    这篇文章主要介绍了更改Python命令行交互提示符的方法,本文还介绍了一款开源软件iPython和Python的distutils,需要的朋友可以参考下
    2015-01-01
  • 对python requests发送json格式数据的实例详解

    对python requests发送json格式数据的实例详解

    今天小编就为大家分享一篇对python requests发送json格式数据的实例详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-12-12
  • 一文教会你调整Matplotlib子图的大小

    一文教会你调整Matplotlib子图的大小

    Matplotlib的可以把很多张图画到一个显示界面,这就设计到面板切分成一个一个子图,下面这篇文章主要给大家介绍了关于调整Matplotlib子图大小的相关资料,文中通过实例代码介绍的非常详细,需要的朋友可以参考下
    2022-06-06
  • python break和continue用法对比

    python break和continue用法对比

    在本篇文章里小编给大家整理的是一篇关于python break和continue用法对比内容,有需要的朋友们可以学习参考下。
    2021-06-06

最新评论