C++中auto_ptr智能指针的用法详解

 更新时间:2016年07月12日 14:21:37   作者:MONKEY_D_MENG  
这篇文章主要介绍了C++中auto_ptr智能指针的用法详解的相关资料,需要的朋友可以参考下

智能指针(auto_ptr) 这个名字听起来很酷是不是?其实auto_ptr 只是C++标准库提供的一个类模板,它与传统的new/delete控制内存相比有一定优势,但也有其局限。本文总结的8个问题足以涵盖auto_ptr的大部分内容。

auto_ptr是什么?

auto_ptr 是C++标准库提供的类模板,auto_ptr对象通过初始化指向由new创建的动态内存,它是这块内存的拥有者,一块内存不能同时被分给两个拥有者。当auto_ptr对象生命周期结束时,其析构函数会将auto_ptr对象拥有的动态内存自动释放。即使发生异常,通过异常的栈展开过程也能将动态内存释放。auto_ptr不支持new 数组。

C++中指针申请和释放内存通常采用的方式是new和delete。然而标准C++中还有一个强大的模版类就是auto_ptr,它可以在你不用的时候自动帮你释放内存。下面简单说一下用法。

<textarea cols="50" rows="15" name="code" class="cpp">

用法一: std::auto_ptr&lt;MyClass&gt;m_example(new MyClass());

用法二: std::auto_ptr&lt;MyClass&gt;m_example; m_example.reset(new MyClass());

用法三(指针的赋值操作): std::auto_ptr&lt;MyClass&gt;m_example1(new MyClass());

std::auto_ptr&lt;MyClass&gt;m_example2(new MyClass()); m_example2=m_example1;</textarea>

则C++会把m_example所指向的内存回收,使m_example1 的值为NULL,所以在C++中,应绝对避免把auto_ptr放到容器中。即应避免下列代码:

vector<auto_ptr<MyClass>>m_example;

当用算法对容器操作的时候,你很难避免STL内部对容器中的元素实现赋值传递,这样便会使容器中多个元素被置位NULL,而这不是我们想看到的。

虽然,标准auto_ptr智能指针机制很多人都知道,但很少使用它。这真是个遗憾,因为auto_ptr优雅地解决了C++设计和编码中常见的问题,正确地使用它可以生成健壮的代码。本文阐述了如何正确运用auto_ptr来让你的代码更加安全——以及如何避免对auto_ptr危险但常见的误用,这些误用会引发间断性发作、难以诊断的bug。

为什么称它为“自动”指针?auto_ptr只是众多可能的智能指针之一。许多商业库提供了更复杂的智能指针,用途广泛而令人惊异,从管理引用的数量到提供先进的代理服务。可以把标准C++ auto_ptr看作智能指针的Ford Escort(elmar注:可能指福特的一种适合家居的车型):一个简易、通用的智能指针,它不包含所有的小技巧,不像专用的或高性能的智能指针那么奢华,但是它可以很好的完成许多普遍的工作,它很适合日常性的使用。

auto_ptr所做的事情,就是动态分配对象以及当对象不再需要时自动执行清理。这里是一个简单的代码示例,没有使用auto_ptr所以不安全:

<textarea cols="50" rows="15" name="code" class="cpp">// 示例1(a):原始代码 void f() { T* pt( new T ); /*...更多的代码...*/ delete pt; }</textarea>

我们大多数人每天写类似的代码。如果f()函数只有三行并且不会有任何意外,这么做可能挺好的。但是如果f()从不执行delete语句,或者是由于过早的返回,或者是由于执行函数体时抛出了异常,那么这个被分配的对象就没有被删除,从而我们产生了一个经典的内存泄漏。

能让示例1(a)安全的简单办法是把指针封装在一个“智能的”类似于指针的对象里,这个对象拥有这个指针并且能在析构时自动删除这个指针所指的对象。因为这个智能指针可以简单的当成一个自动的对象(这就是说,它出了作用域时会自动毁灭),所以很自然的把它称之为“智能”指针:

<textarea cols="50" rows="15" name="code" class="cpp">// 
示例1(b):安全代码,使用了auto_ptr void f() { auto_ptr&lt;T&gt; pt( new T ); /*...更多的代码...*/ } // 酷:当pt出了作用域时析构函数被调用,从而对象被自动删除</textarea>

现在代码不会泄漏T类型的对象,不管这个函数是正常退出还是抛出了异常,因为pt的析构函数总是会在出栈时被调用,清理会自动进行。

最后,使用一个auto_ptr就像使用一个内建的指针一样容易,而且如果想要“撤销”资源,重新采用手动的所有权,我们只要调用release()。

<textarea cols="50" rows="15" name="code" class="cpp">// 示例2:使用一个auto_ptr void g() { // 现在,我们有了一个分配好的对象 T* pt1 = new T; // 将所有权传给了一个auto_ptr对象 auto_ptr&lt;T&gt; pt2(pt1); // 使用auto_ptr就像我们以前使用简单指针一样, *pt2 = 12; // 就像*pt1 = 12 pt2-&gt;SomeFunc(); // 就像pt1-&gt;SomeFunc(); // 用get()来获得指针的值 assert( pt1 == pt2.get() ); // 用release()来撤销所有权 T* pt3 = pt2.release(); // 自己删除这个对象,因为现在没有任何auto_ptr拥有这个对象 delete pt3; } // pt2不再拥有任何指针,所以不要试图删除它...OK,不要重复删除 </textarea>

最后,我们可以使用auto_ptr的reset()函数来重置auto_ptr使之拥有另一个对象。如果这个auto_ptr已经拥有了一个对象,那么,它会先删除已经拥有的对象,因此调用reset()就如同销毁这个auto_ptr,然后新建一个并拥有一个新对象:

<textarea cols="50" rows="15" name="code" class="cpp">//
示例 3:使用reset() void h() { auto_ptr&lt;T&gt; pt( new T(1) ); pt.reset( new T(2) ); // 删除由"new T(1)"分配出来的第一个T } // 最后pt出了作用域,第二个T也被删除了</textarea>

auto_ptr用法:

1. 需要包含头文件<memory>。

2. Constructor:explicit auto_ptr(X* p = 0) throw(); 将指针p交给auto_ptr对象托管。

3. Copy constructor:auto_ptr(const auto_ptr&) throw(); template<class Y> auto_ptr(const auto_ptr<Y>& a) throw(); 指针的托管权会发生转移。

4. Destructor: ~auto_ptr(); 释放指针p指向的空间。

5. 提供了两个成员函数 X* get() const throw(); //返回保存的指针

6. 对象中仍保留指针 X* release() const throw(); //返回保存的指针,对象中不保留指针

auto_ptr实现关键点:

1. 利用特点“栈上对象在离开作用范围时会自动析构”。

2. 对于动态分配的内存,其作用范围是程序员手动控制的,这给程序员带来了方便但也不可避免疏忽造成的内存泄漏,毕竟只有编译器是最可靠的。
3. auto_ptr通过在栈上构建一个对象a,对象a中wrap了动态分配内存的指针p,所有对指针p的操作都转为对对象a的操作。而在a的析构函数中会自动释放p的空间,而该析构函数是编译器自动调用的,无需程序员操心。

多说无益,看一个最实用的例子:

<textarea cols="50" rows="15" name="code" class="cpp">#include &lt;iostream&gt; #include &lt;memory&gt; using namespace std; class TC { public: TC(){cout&lt;&lt;"TC()"&lt;&lt;endl;} ~TC(){cout&lt;&lt;"~TC()"&lt;&lt;endl;} }; void foo(bool isThrow) { auto_ptr&lt;TC&gt; pTC(new TC); 
// 方法2 //TC *pTC = new TC; 
// 方法1 try { if(isThrow) throw "haha"; } catch(const char* e) { //delete pTC; // 方法1 throw; } //delete pTC; // 方法1 } int main() { try { foo(true); } catch(...) { cout&lt;&lt;"caught"&lt;&lt;endl; } system("pause"); }</textarea>

1. 如果采用方案1,那么必须考虑到函数在因throw异常的时候释放所分配的内存,这样造成的结果是在每个分支处都要很小心的手动 delete pTC;。

2. 如果采用方案2,那就无需操心何时释放内存,不管foo()因何原因退出, 栈上对象pTC的析构函数都将调用,因此托管在之中的指针所指的内存必然安全释放。
至此,智能指针的优点已经很明了了。

但是要注意使用中的一个陷阱,那就是指针的托管权是会转移的。 例如在上例中,如果 auto_ptr<TC> pTC(new TC); auto_ptr<TC> pTC1=pTC; 那么,pTC1将拥有该指针,而pTC没有了,如果再用pTC去引用,必然导致内存错误。

要避免这个问题,可以考虑使用采用了引用计数的智能指针,例如boost::shared_ptr等。auto_ptr不会降低程序的效率,但auto_ptr不适用于数组,auto_ptr根本不可以大规模使用。 shared_ptr也要配合weaked_ptr,否则会很容易触发循环引用而永远无法回收内存。 理论上,合理使用容器加智能指针,C++可以完全避免内存泄露,效率只有微不足道的下降(中型以上程序最多百分之一)。

以上所述是小编给大家介绍的C++中auto_ptr智能指针的用法详解,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对脚本之家网站的支持!

相关文章

  • c语言中字符串分割函数及实现方法

    c语言中字符串分割函数及实现方法

    下面小编就为大家带来一篇c语言中字符串分割函数及实现方法。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2016-05-05
  • Java C++ 算法题解leetcode1582二进制矩阵特殊位置

    Java C++ 算法题解leetcode1582二进制矩阵特殊位置

    这篇文章主要为大家介绍了Java C++ 算法题解leetcode1582二进制矩阵特殊位置示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-09-09
  • C++ 之explicit关键字

    C++ 之explicit关键字

    今天我们来谈谈C++中的explicit关键字,这篇文章详细介绍了C语言的关键字explicit关键字,本文有详细的代码实例,感兴趣的同学可以借鉴参考
    2023-04-04
  • C++ new、delete(new[]、delete[])操作符重载需要注意的问题

    C++ new、delete(new[]、delete[])操作符重载需要注意的问题

    这篇文章主要介绍了C++ new、delete(new[]、delete[])操作符重载需要注意的问题,本文同时讲解了兼容默认的 new、delete 的错误处理方式、多态的问题等内容,需要的朋友可以参考下
    2014-10-10
  • C++ 继承,虚继承(内存结构)详解

    C++ 继承,虚继承(内存结构)详解

    C++继承和虚继承的内存模型是一个老生常谈的话题,实现方法主要依赖于编译器,本文从多个角度通过代码详解C++中虚继承的内存模型知识,感兴趣的朋友跟随小编一起看看吧
    2021-09-09
  • C 语言restrict 关键字的使用浅谈

    C 语言restrict 关键字的使用浅谈

    C 语言restrict 关键字的使用浅谈,需要的朋友可以参考一下
    2013-04-04
  • C语言学习之指针的使用详解

    C语言学习之指针的使用详解

    想突破C语言的学习,对指针的掌握是非常重要的,本文为大家总结了C语言中指针的相关知识点,文中的示例代码讲解详细,感兴趣的小伙伴可以学习一下
    2022-10-10
  • C语言实现刮刮乐效果是示例代码

    C语言实现刮刮乐效果是示例代码

    这篇文章主要为大家详细介绍了如何C语言模拟实现刮刮乐的效果,只要按下鼠标左键并移动就可以刮开刮卡层,感兴趣的小伙伴可以跟随小编一起学习一下
    2023-01-01
  • 最短时间学会基于C++实现DFS深度优先搜索

    最短时间学会基于C++实现DFS深度优先搜索

    常见使用深度优先搜索(DFS)以及广度优先搜索(BFS)这两种搜索,今天我们就来讲讲什么是深度优先搜索,感兴趣的可以了解一下
    2021-08-08
  • C语言单链表的实现

    C语言单链表的实现

    单链表是一种链式存取的数据结构,用一组地址任意的存储单元存放线性表中的数据元素。这篇文章主要介绍了C语言单链表的实现 的相关资料,需要的朋友可以参考下
    2016-04-04

最新评论