机器学习实战 (Peter Harrington著) 英文原版 pdf高清完整版[附源代码]

  • 书籍大小:52.4MB
  • 书籍语言:英文软件
  • 书籍类型:国外软件
  • 书籍授权:免费软件
  • 书籍类别:其它相关
  • 应用平台:Windows平台
  • 更新时间:2018-06-13
  • 购买链接:
  • 网友评分:
360通过 腾讯通过 金山通过

情介绍

机器学习实战全书通过精心编排的实例,切入日常工作任务,摒弃学术化语言,利用高效的可复用Python代码来阐释如何处理统计数据,进行数据分析及可视化。机器学习实战 pdf 2013年6月由人民邮电出版社出版发行,是一本经典的关于机器学习的书籍。学习是人工智能研究领域中一个极其重要的研究方向,在现今的大数据时代背景下,捕获数据并从中萃取有价值的信息或模式,成为各行业求生存、谋发展的决定性手段,这使得这一过去为分析师和数学家所专属的研究领域越来越为人们所瞩目。

机器学习实战

作者简介:

Peter.Harrington,拥有电气工程学士和硕士学位,他曾经在美国加州和中国的英特尔公司工作7年。Peter拥有5项美国专利,在三种学术期刊上发表过文章。他现在是Zillabyte公司的首席科学家,在加入该公司之前,他曾担任2年的机器学习软件顾问。Peter在业余时间还参加编程竞赛和建造3D打印机。

精彩书评:

“易学易懂,用处很大。”

——Alexandre Alves,Oracle CEP的架构师

“精心织构的代码完美地诠释出机器学习的核心要义。”

——Patrick Toohey,Mettler-Toledo Hi-Speed软件工程师

“实例很棒!可用于任何领域!”

——John Griffin,Hibernate Search in Action一书的合作者

“叙述循序渐进,巧妙地阐述了算法之间的差异。”

——Stephen McKamey,Isomer Innovations技术实践总监

机器学习实战目录:

第一部分 分类

第1章 机器学习基础

1.1  何谓机器学习

1.1.1  传感器和海量数据

1.1.2  机器学习非常重要

1.2  关键术语

1.3  机器学习的主要任务

1.4  如何选择合适的算法

1.5  开发机器学习应用程序的步骤

1.6  Python语言的优势

1.6.1  可执行伪代码

1.6.2  Python比较流行

1.6.3  Python语言的特色

1.6.4  Python语言的缺点

1.7  NumPy函数库基础

1.8  本章小结

2.1  k-近邻算法概述

2.1.1  准备:使用Python导入数据

2.1.2  从文本文件中解析数据

2.1.3  如何测试分类器

2.2  示例:使用k-近邻算法改进约会网站的配对效果

2.2.1  准备数据:从文本文件中解析数据

2.2.2  分析数据:使用Matplotlib创建散点图

2.2.3  准备数据:归一化数值

2.2.4  测试算法:作为完整程序验证分类器

2.2.5  使用算法:构建完整可用系统

2.3  示例:手写识别系统

2.3.1  准备数据:将图像转换为测试向量

2.3.2  测试算法:使用k-近邻算法识别手写数字

2.4  本章小结

第3章 决策树

3.1  决策树的构造

3.1.1  信息增益

3.1.2  划分数据集

3.1.3  递归构建决策树

3.2  在Python中使用Matplotlib注解绘制树形图

3.2.1  Matplotlib注解

3.2.2  构造注解树

3.3  测试和存储分类器

3.3.1  测试算法:使用决策树执行分类

3.3.2  使用算法:决策树的存储

3.4  示例:使用决策树预测隐形眼镜类型

3.5  本章小结

第4章 基于概率论的分类方法:朴素贝叶斯

4.1  基于贝叶斯决策理论的分类方法

4.2  条件概率

4.3  使用条件概率来分类

4.4  使用朴素贝叶斯进行文档分类

4.5  使用Python进行文本分类

4.5.1  准备数据:从文本中构建词向量

4.5.2  训练算法:从词向量计算概率

4.5.3  测试算法:根据现实情况修改分类器

4.5.4  准备数据:文档词袋模型

4.6  示例:使用朴素贝叶斯过滤垃圾邮件

4.6.1  准备数据:切分文本

4.6.2  测试算法:使用朴素贝叶斯进行交叉验证

4.7  示例:使用朴素贝叶斯分类器从个人广告中获取区域倾向

4.7.1  收集数据:导入RSS源

4.7.2  分析数据:显示地域相关的用词

4.8  本章小结

第5章 Logistic回归

5.1  基于Logistic回归和Sigmoid函数的分类

5.2  基于最优化方法的最佳回归系数确定

5.2.1  梯度上升法

5.2.2  训练算法:使用梯度上升找到最佳参数

5.2.3  分析数据:画出决策边界

5.2.4  训练算法:随机梯度上升

5.3  示例:从疝气病症预测病马的死亡率

5.3.1  准备数据:处理数据中的缺失值

5.3.2  测试算法:用Logistic回归进行分类

5.4  本章小结

第6章 支持向量机

6.1  基于最大间隔分隔数据

6.2  寻找最大间隔

6.2.1  分类器求解的优化问题

6.2.2  SVM应用的一般框架

6.3  SMO高效优化算法

6.3.1  Platt的SMO算法

6.3.2  应用简化版SMO算法处理小规模数据集

6.4  利用完整Platt SMO算法加速优化

6.5  在复杂数据上应用核函数

6.5.1  利用核函数将数据映射到高维空间

6.5.2  径向基核函数 

6.5.3  在测试中使用核函数

6.6  示例:手写识别问题回顾

6.7  本章小结

第7章 利用AdaBoost元算法提高分类 性能

7.1  基于数据集多重抽样的分类器

7.1.1  bagging:基于数据随机重抽样的分类器构建方法

7.1.2  boosting

7.2  训练算法:基于错误提升分类器的性能

7.3  基于单层决策树构建弱分类器

7.4  完整AdaBoost算法的实现

7.5  测试算法:基于AdaBoost的分类

7.6  示例:在一个难数据集上应用AdaBoost

7.7  非均衡分类问题

7.7.1  其他分类性能度量指标:正确率、召回率及ROC曲线

7.7.2  基于代价函数的分类器决策控制

7.7.3  处理非均衡问题的数据抽样方法

7.8  本章小结

第二部分 利用回归预测数值型数据

第8章 预测数值型数据:回归

8.1  用线性回归找到最佳拟合直线

8.2  局部加权线性回归

8.3  示例:预测鲍鱼的年龄

8.4  缩减系数来“理解”数据

8.4.1  岭回归

8.4.2  lasso

8.4.3  前向逐步回归

8.5  权衡偏差与方差

8.6  示例:预测乐高玩具套装的价格

8.6.2  训练算法:建立模型

8.7  本章小结

第9章 树回归

9.1  复杂数据的局部性建模

9.2  连续和离散型特征的树的构建

9.3  将CART算法用于回归

9.3.1  构建树

9.3.2  运行代码

9.4  树剪枝

9.4.1  预剪枝

9.4.2  后剪枝

9.5  模型树

9.6  示例:树回归与标准回归的比较

9.7  使用Python的Tkinter库创建GUI

9.7.1  用Tkinter创建GUI

9.7.2  集成Matplotlib和Tkinter

9.8  本章小结

第三部分 无监督学习

第10章 利用K-均值聚类算法对未标注数据分组

10.1  K-均值聚类算法

10.2  使用后处理来提高聚类性能

10.3  二分K-均值算法

10.4  示例:对地图上的点进行聚类

10.4.1  Yahoo! PlaceFinder API

10.5  本章小结

第11章 使用Apriori算法进行关联分析

11.1  关联分析

11.2  Apriori原理

11.3  使用Apriori算法来发现频繁集

11.3.1  生成候选项集

11.3.2  组织完整的Apriori算法

11.4  从频繁项集中挖掘关联规则

11.5  示例:发现国会投票中的模式

11.5.2  测试算法:基于美国国会投票记录挖掘关联规则

11.6  示例:发现毒蘑菇的相似特征

11.7  本章小结

第12章 使用FP-growth算法来高效发现频繁项集

......

第四部分 其他工具

第13章 利用PCA来简化数据

......

第14章 利用SVD简化数据

......

第15章 大数据与MapReduce

......

附录A  Python入门

附录B  线性代数

附录C  概率论复习

附录D  资源

索引

版权声明

载地址

下载错误?【投诉报错】

机器学习实战 (Peter Harrington著) 英文原版 pdf高清完整版[附源代码]

      气书籍

      载声明

      ☉ 解压密码:www.jb51.net 就是本站主域名,希望大家看清楚,[ 分享码的获取方法 ]可以参考这篇文章
      ☉ 推荐使用 [ 迅雷 ] 下载,使用 [ WinRAR v5 ] 以上版本解压本站软件。
      ☉ 如果这个软件总是不能下载的请在评论中留言,我们会尽快修复,谢谢!
      ☉ 下载本站资源,如果服务器暂不能下载请过一段时间重试!或者多试试几个下载地址
      ☉ 如果遇到什么问题,请评论留言,我们定会解决问题,谢谢大家支持!
      ☉ 本站提供的一些商业软件是供学习研究之用,如用于商业用途,请购买正版。
      ☉ 本站提供的机器学习实战 (Peter Harrington著) 英文原版 pdf高清完整版[附源代码]资源来源互联网,版权归该下载资源的合法拥有者所有。