Redis如何实现计数统计

 更新时间:2024年04月10日 11:12:02   作者:哗哗的世界  
这篇文章主要介绍了Redis如何实现计数统计方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教

介绍

计数器大量应用于互联网上大大小小的项目,你可以在很多场景都能找到计数器的应用范畴,单纯以技术派项目为例,也有相当多的地方会有计数相关的诉求,比如

  • 文章带赞数
  • 收藏数
  • 评论数
  • 用户粉丝数
  • ......

技术派中有两种查询计数相关的方案,一个是基于db中的操作记录进行实施,一种是基于redis的incr特性来实现计数器

下面来看一下,redis的计数器是怎样用于技术派的技术场景的

计数的业务场景

首先我们看一下技术派中使用到的计数器的场景,主要有两大类(业务计数+pv/uv),三个细分领域(用户、文章、站点)

用户的相关统计信息

  • 文章数,文章总阅读数,粉丝数,关注作者数,文章被收藏数、被点赞数量

站点的pv/uv等统计信息

  • 网站的总pv/uv,某一天的pv/uv
  • 某个uri的pv/uv

注意上面的几个场景,这里主要介绍redis计数器的使用

那用户与文章的相关统计将是我们的重点,因为这两个的业务属性很相似,因此我们选择一个重点,以用户统计来实现。

redis计数器

redis计数器,主要是借助原生的incr指令来实现原子的+1-1操作,更棒的是不仅redis的string数据结构支持incr,hash、zset数据结构同样也是支持incr的

1.incr指令

Redis incr命令将key中存储的数字值增值一。

  • 如果key不存在,那么key的值会先被初始化为0,然后在执行INCR操作。
  • 如果值包含错误类型,或者字符串类型的值不能表示为数字,那么返回一个错误。
  • 本操作的值限制在64位有符号数字表示之内。

接下来看项目封装实现

    /**
     * 自增
     *
     * @param key
     * @param filed
     * @param cnt
     * @return
     */
    public static Long hIncr(String key, String filed, Integer cnt) {
        return template.execute((RedisCallback<Long>) con -> con.hIncrBy(keyBytes(key), valBytes(filed), cnt));
    }

2.用户计数统计

我们将用户的相关计数,每个用户对应一个hash数据结构

key: user_statistic_${userId}

filed: 

  • follCount: 关注数
  • fansCount: 粉丝数
  • articleCount: 已发布文章数
  • praiseCount: 文章点赞数
  • readCount: 文章被阅读数
  • collectionCount: 文章被收藏数

计数器的核心就在于满足条件之后,实现的计数 + 1 / -1

通常的业务场景中,此类计数不太建议直接与业务代码强耦合,举个例子

用户收藏了一篇文章,若按照正常的设计,就是在收藏这里,带哦用计数器执行 + 1 操作 

上面这样实现有问题吗? 

显然是没有额问题的,但是不够好,不够优雅。

比如现在技术派的场景中,点赞之后,除了计数器更新之外,还有前面用户说到的用户活跃度更新,若所有的逻辑都放在业务中,会导致业务的耦合较重

技术派选择消息机制来应对这种场景(大一点的项目会设计自己额的消息总线,为了让各自的业务逻辑内聚,向外抛出自己额的状态/业务变更消息,实现解耦)

对映的,计数实现逻辑在。src/main/java/com/github/paicoding/forum/service/statistics/listener/UserStatisticEventListener.java

package com.github.paicoding.forum.service.statistics.listener;
 
import com.github.paicoding.forum.api.model.enums.ArticleEventEnum;
import com.github.paicoding.forum.api.model.event.ArticleMsgEvent;
import com.github.paicoding.forum.api.model.vo.notify.NotifyMsgEvent;
import com.github.paicoding.forum.core.cache.RedisClient;
import com.github.paicoding.forum.service.article.repository.dao.ArticleDao;
import com.github.paicoding.forum.service.article.repository.entity.ArticleDO;
import com.github.paicoding.forum.service.comment.repository.entity.CommentDO;
import com.github.paicoding.forum.service.user.repository.entity.UserFootDO;
import com.github.paicoding.forum.service.user.repository.entity.UserRelationDO;
import com.github.paicoding.forum.service.statistics.constants.CountConstants;
import org.springframework.context.event.EventListener;
import org.springframework.scheduling.annotation.Async;
import org.springframework.stereotype.Component;
 
import javax.annotation.Resource;
 
/**
 * 用户活跃相关的消息监听器
 *
 * @author YiHui
 * @date 2023/8/19
 */
@Component
public class UserStatisticEventListener {
    @Resource
    private ArticleDao articleDao;
 
    /**
     * 用户操作行为,增加对应的积分
     *这段代码是一个使用Spring框架的事件监听器注解。
     * 它使用了@EventListener注解来指定要监听的事件类型为NotifyMsgEvent.class,并且使用了@Async注解来表示该方法是异步执行的。
     *
     * 当NotifyMsgEvent事件被发布时,该事件监听器方法将被自动调用。由于使用了@Async注解,
     * 该方法将在单独的线程中异步执行,不会阻塞主线程。
     * @param msgEvent
     */
    @EventListener(classes = NotifyMsgEvent.class)
    @Async
    public void notifyMsgListener(NotifyMsgEvent msgEvent) {
        switch (msgEvent.getNotifyType()) {
            //评论/回复
            case COMMENT:
            case REPLY:
                CommentDO comment = (CommentDO) msgEvent.getContent();
                RedisClient.hIncr(CountConstants.ARTICLE_STATISTIC_INFO + comment.getArticleId(), CountConstants.COMMENT_COUNT, 1);
                break;
             //删除评论/回复
            case DELETE_COMMENT:
            case DELETE_REPLY:
                comment = (CommentDO) msgEvent.getContent();
                RedisClient.hIncr(CountConstants.ARTICLE_STATISTIC_INFO + comment.getArticleId(), CountConstants.COMMENT_COUNT, -1);
                break;
                //收藏
            case COLLECT:
                UserFootDO foot = (UserFootDO) msgEvent.getContent();
                RedisClient.hIncr(CountConstants.USER_STATISTIC_INFO + foot.getDocumentUserId(), CountConstants.COLLECTION_COUNT, 1);
                RedisClient.hIncr(CountConstants.ARTICLE_STATISTIC_INFO + foot.getDocumentId(), CountConstants.COLLECTION_COUNT, 1);
                break;
                //取消收藏
            case CANCEL_COLLECT:
                foot = (UserFootDO) msgEvent.getContent();
                RedisClient.hIncr(CountConstants.USER_STATISTIC_INFO + foot.getDocumentUserId(), CountConstants.COLLECTION_COUNT, -1);
                RedisClient.hIncr(CountConstants.ARTICLE_STATISTIC_INFO + foot.getDocumentId(), CountConstants.COLLECTION_COUNT, -1);
                break;
                //点赞
            case PRAISE:
                foot = (UserFootDO) msgEvent.getContent();
                RedisClient.hIncr(CountConstants.USER_STATISTIC_INFO + foot.getDocumentUserId(), CountConstants.PRAISE_COUNT, 1);
                RedisClient.hIncr(CountConstants.ARTICLE_STATISTIC_INFO + foot.getDocumentId(), CountConstants.PRAISE_COUNT, 1);
                break;
                //取消点赞
            case CANCEL_PRAISE:
                foot = (UserFootDO) msgEvent.getContent();
                RedisClient.hIncr(CountConstants.USER_STATISTIC_INFO + foot.getDocumentUserId(), CountConstants.PRAISE_COUNT, -1);
                RedisClient.hIncr(CountConstants.ARTICLE_STATISTIC_INFO + foot.getDocumentId(), CountConstants.PRAISE_COUNT, -1);
                break;
            case FOLLOW:
                UserRelationDO relation = (UserRelationDO) msgEvent.getContent();
                // 主用户粉丝数 + 1
                RedisClient.hIncr(CountConstants.USER_STATISTIC_INFO + relation.getUserId(), CountConstants.FANS_COUNT, 1);
                // 粉丝的关注数 + 1
                RedisClient.hIncr(CountConstants.USER_STATISTIC_INFO + relation.getFollowUserId(), CountConstants.FOLLOW_COUNT, 1);
                break;
            case CANCEL_FOLLOW:
                relation = (UserRelationDO) msgEvent.getContent();
                // 主用户粉丝数 + 1
                RedisClient.hIncr(CountConstants.USER_STATISTIC_INFO + relation.getUserId(), CountConstants.FANS_COUNT, -1);
                // 粉丝的关注数 + 1
                RedisClient.hIncr(CountConstants.USER_STATISTIC_INFO + relation.getFollowUserId(), CountConstants.FOLLOW_COUNT, -1);
                break;
            default:
        }
    }
 
    /**
     * 发布文章,更新对应的文章计数
     *
     * @param event
     */
    @Async
    @EventListener(ArticleMsgEvent.class)
    public void publishArticleListener(ArticleMsgEvent<ArticleDO> event) {
        ArticleEventEnum type = event.getType();
        if (type == ArticleEventEnum.ONLINE || type == ArticleEventEnum.OFFLINE || type == ArticleEventEnum.DELETE) {
            Long userId = event.getContent().getUserId();
            int count = articleDao.countArticleByUser(userId);
            RedisClient.hSet(CountConstants.USER_STATISTIC_INFO + userId, CountConstants.ARTICLE_COUNT, count);
        }
    }
}

上面直接基于当下技术派抛出的各种消息事件,来实现用户/文章对应计数变更

不一样的地方则在于用户的文章数统计,因为消息发布时,并没有告知这个文章是 从 未上线状态到发布, 发布到下线/删除 ,因此无法进行+1 -1。我们直接采用的是全量的更新策略。

注:

全量更新策略指的是**在数据同步或更新过程中,每次都对整个数据集进行处理,而不是只更新发生变化的部分**。

这种策略的优点包括:

- **简单直观**:由于不需要考虑数据的增量变化,因此实现起来相对简单,易于理解和操作。
- **数据一致性**:每次全量更新可以确保目标系统中的数据与源系统保持完全一致,避免了因部分更新而导致的数据不一致问题。

然而,全量更新策略也存在一些缺点:

- **资源消耗大**:当数据量庞大或者更新频率较高时,全量更新可能会占用大量的网络带宽和存储资源,导致效率低下。
- **系统压力大**:频繁的全量更新可能会给系统带来较大的处理压力,尤其是在数据量持续增长的情况下,可能会超出系统的处理能力。

此外,在某些情况下,全量更新策略可能不是最佳选择。例如,在数据仓库中,如果源数据库的数据量非常大,而且只有少量数据发生变更,使用全量更新策略就不如增量更新策略高效。增量更新策略只针对发生变化的数据进行处理,这样可以大大减少数据处理的工作量和系统资源的消耗。

总的来说,全量更新策略适用于数据量较小或更新频率较低的场景,而在数据量大且更新频繁的环境中,可能需要考虑其他更高效的数据更新策略。在实际应用中,应根据具体的业务需求和系统条件来选择合适的更新策略。

3.用户统计信息查询

前面实现了用户的相关统计数,查询用户的统计信息则相对简单了,直接hgetall即可。

4.缓存一致性

基本上到上面,一个完整的计数服务就已经成型了,但是我们在实际的生产服务中,再自信的人也不保证它没问题100分。

通常我们会做一个校对/定时同步任务来保证缓存与实际数据中的一致性

技术派中选择简单的定时同步方案来实现

  • 用户统计信息每天全量同步

                

  • 文章统计信息每天全量同步

总结

基于redis的incr ,很容易就可以实现计数相关的需求支撑,但是为啥我们要用redis来实现一个计数器呢?直接用数据库的原始数据进行统计有什么问题吗?

通常而言,项目初期,或者项目本身非常简单,访问量低,只希望快速上线支撑业务时,使用db进行统计即可,优势时简单,叙述,不容易出问题;缺点则是每次都是实时统计性能差,扩展性不强。

当我们项目发展起来,借助redis直接存储最终结果。再展示层直接俄获取即可,性能更强,满足高并发,缺点是数据的一致性保障难度高。先选择一个实现代价小的,再重构哈啊哈哈。

以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • Python利用redis限制用户重复刷新带来的数据问题

    Python利用redis限制用户重复刷新带来的数据问题

    在网站开发中,我们经常会遇到需要控制用户重复刷新页面的情况,本文就来介绍了Python利用redis限制用户重复刷新带来的数据问题,感兴趣的可以了解一下
    2024-03-03
  • redis删除指定key的实现步骤

    redis删除指定key的实现步骤

    本文主要介绍了redis删除指定key的实现步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2022-08-08
  • 在Mac OS上安装Vagrant和Docker的教程

    在Mac OS上安装Vagrant和Docker的教程

    这篇文章主要介绍了在Mac OS上安装Vagrant和Docker的教程,并安装和设置Postgres和Elasticsearch和Redis,需要的朋友可以参考下
    2015-04-04
  • 一文详解Redis中的持久化

    一文详解Redis中的持久化

    这篇文章主要介绍了一文详解Redis中的持久化,持久化功能有效地避免因进程退出造成的数据丢失问题,当下次重启时利用之前持久化的文件即可实现数据恢复
    2022-09-09
  • redis配置文件redis.conf中文版(基于2.4)

    redis配置文件redis.conf中文版(基于2.4)

    这篇文章主要介绍了redis配置文件redis.conf中文版(基于2.4),对英文不好的朋友是非常好的参考,需要的朋友可以参考下
    2014-06-06
  • redis中修改配置文件中的端口号 密码方法

    redis中修改配置文件中的端口号 密码方法

    今天小编就为大家分享一篇redis中修改配置文件中的端口号 密码方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-05-05
  • Redis内存回收策略

    Redis内存回收策略

    这篇文章主要介绍了Redis内存回收策略,需要的朋友可以参考下
    2007-02-02
  • Redis集群服务器的实现(图文步骤)

    Redis集群服务器的实现(图文步骤)

    本文介绍了Redis集群服务器的优势,为读者提供了全面的Redis集群服务器知识和使用技巧,具有一定的参考价值,感兴趣的可以了解一下
    2023-09-09
  • Redis实现布隆过滤器的代码详解

    Redis实现布隆过滤器的代码详解

    布隆过滤器(Bloom Filter)是Redis 4.0版本提供的新功能,它被作为插件加载到Redis服务器中,给Redis提供强大的去重功能,本文将给大家详细介绍一下Redis布隆过滤器,文中有相关的代码示例,需要的朋友可以参考下
    2023-07-07
  • Redisson分布式限流的实现原理分析

    Redisson分布式限流的实现原理分析

    这篇文章主要介绍了Redisson分布式限流的实现原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2024-07-07

最新评论