Mongodb亿级数据性能测试和压测

 更新时间:2024年06月13日 10:10:32   作者:huisheng_qaq  
MongoDB是一个开源的、基于分布式文件存储的NoSQL数据库系统,它使用文档存储方式,数据结构由键值(key-value)对组成,本文给大家介绍了Mongodb亿级数据性能测试和压测,需要的朋友可以参考下

一,mongodb数据性能测试

之前公司将用户的游戏数据存储在mysql中,就是直接将json数据存储到mysql数据库里面,几个月不到,数据库里面已经有两亿条数据,而且每行中每个json数据量也比较大,导致占用的磁盘容量也比较大,因此为了解决mysql带来多方面的瓶颈,最终选择使用mongodb来代替mysql。为了测试mongodbdb的性能以及是否满足需求,因此做了以下测试,对mongodb在高流量时验证其增删改查的效率,以及对其进行压测

服务器配置:2核4g轻量级服务器 磁盘容量 70GB

每条数据大概在500个字节,索引有一个id主键索引,还有一个parentId和category的联合唯一索引,这里两个字段能保证唯一性,因此用唯一索引效率更优

1,mongodb数据库创建和索引设置

首先在Java代码中创建一个实体类,用这个类作为json对象插入到文档中即可。

@Data
public class Archive {
    private String id;
    //账号id
    private String parentId;
    private String category;
    private String content;
}

随后在mongodb中创建一个数据库,然后再该库下面建立一个名为 archive 的集合,mongodb的集合就是类似于mysql的表,两者概念是一样的。由于后期数据量可能非常大,因此根据mongodb官方文档所说,在数据插入前,尽量提前建立索引,为了满足业务需求,这里选择创建一个联合索引,由于我这边业务能保证要加索引的两个字段的唯一性,因此选择直接添加唯一索引

db.users.createIndex({parentId: 1,category:1}, {unique: true})

如果navicate操作不方便的话,可以安装一个 Mongodb Compass 可视化工具,如下图,很多操作都是可以在这个可视化图形界面上面直接操作的

在这里插入图片描述

2,线程池+批量方式插入数据

由于这边主要是io操作将数据插入,不需要计算之类的,因此选择使用io密集型线程池,接下来自定义一个线程池

@Slf4j
public class ThreadPoolUtil {
    public static ThreadPoolExecutor pool = null;
    public static synchronized ThreadPoolExecutor getThreadPool() {
        if (pool == null) {
            //获取当前机器的cpu
            int cpuNum = Runtime.getRuntime().availableProcessors();
            int maximumPoolSize = cpuNum * 2 ;
            pool = new ThreadPoolExecutor(
                    maximumPoolSize - 2,
                    maximumPoolSize,
                    5L,   //5s
                    TimeUnit.SECONDS,
                    new LinkedBlockingQueue<>(),  //数组有界队列
                    Executors.defaultThreadFactory(), //默认的线程工厂
                    new ThreadPoolExecutor.AbortPolicy());  //直接抛异常,默认异常
        }
        return pool;
    }
}

第二步就是定义一个线程任务,到时将任务丢到线程池里面,其代码如下,该任务实现Callable接口,每个线程插入10万条,每次批量插入100条数据,大概就是需要1000次

@Data
public class ArchiveTask implements Callable {
    private MongoTemplate mongoTemplate;
    public ArchiveTask(MongoTemplate mongoTemplate){
        this.mongoTemplate = mongoTemplate;
    }
    @Override
    public Object call() throws Exception {
        List<Archive> list = new ArrayList<>();
        for (int i = 1; i <= 100000; i++) {
            Archive archive = new Archive();
            archive.setCategory("score");
            archive.setId(SnowflakeUtils.nextOrderId());
            archive.setParentId(SnowflakeUtils.nextOrderId());
            Map<String,String> map = new HashMap<>();
            StringBuilder sb = new StringBuilder();
            for (int j = 0; j < 15; j++) {
                sb.append(UUID.randomUUID());
            }
            map.put("key" + i, sb.toString());
            archive.setContent(JSON.toJSONString(map));
            list.add(archive);
            if (i%100 == 0){
                mongoTemplate.insertAll(list);
                list.clear();	//手动gc,100个对象没被引用会被回收
                list = new ArrayList<>();
            }
        }
        return null;
    }
}

最后定义一个测试类或者一个接口,我这边使用接口,部分代码如下,循环100次,就是会创建100个线程任务,随后将这个线程任务丢到线程池中,100乘以100000就是1千万条数据

@Resource
private MongoTemplate mongoTemplate;
static ThreadPoolExecutor threadPool = ThreadPoolUtil.getThreadPool();
@GetMapping("/add")
public void test(){
	for (int i = 0; i < 100; i++) {
		ArchiveTask archiveTask = new ArchiveTask(mongoTemplate);
		threadPool.submit(archiveTask);
    }
	log.info("数据添加完成");
}

3,一千万数据性能测试

mongodb性能测试,此时archive 集合中已有10134114条数据,平均每条数据大小674字节,1千多万条,此时的存储大小为5.5个g,索引的总大小为459m

接下来通过唯一索引查询一条数据,这里直接通过parentId查询一条数据,此时数据还是在不断插入的

db.archive.find({parentId:"2405291858848274156091867143"})

是的,如下图所示,1000多万条数据里面查询,只需要25ms即可将数据放回,当然这里没有在高流量的情况下进行压测。

在这里插入图片描述

4,两千万数据性能测试

此时archive集合来到了两千万条,每条数据和之前一样,平均大小是674字节,数据总大小来到了10.92G,内存大小12.65g,索引总大小是913m

在这里插入图片描述

接下来测试查询效率,依旧使用上面的这个parentId,由于设置的是parentId+category的联合唯一索引,接下来两个参数一起查

db.archive.find({parentId:"2405291858848274156091867143",category:"score"})

2000万的数据查询结果如下,只需要21ms,和上面的25ms慢了将近4ms,但是这4ms可以忽略

在这里插入图片描述

5,五千万数据性能测试

由于70G的磁盘容量已经只剩48G,因此在content字段将500字节的值调小,调整到150个字节,以便能插入更多数据。将上面的StringBuilder拼接的15个uuid改成1个uuid

map.put("key" + i,UUID.randomUUID().toString());

此时数据来到50245694条数据,每条数据平均大小372kb,总存储大小12.66g,内存中的总大小17.45g,索引大小目前只有2.8g

在这里插入图片描述

为了保证拿到的parentId是一次没有查询过的,手动的插入一批数据,手动单条插入20条数据,耗时600ms,在插入数据时会改变索引,插入数据会稍微慢些。此时的插入操作都是在多线程插入大量数据的时候测试的

db.archive.insertOne({parentId:"2024111222337",category:"score1",content:"cbasbsadhpasdbsaodgs"})
db.archive.insertOne({parentId:"2024111222337",category:"score2",content:"cbasbsadhpasdbsaodgs"})
....

此时第一次查询这条数据,共耗时153ms,共查出20条数据

在这里插入图片描述

再第二次查询之后,花费78ms,内部应该也是会将查询结果加入到缓存中,方便第二次查询

在这里插入图片描述

在上面的插入操作中由于会破坏到索引结构,因此耗时久一点。接下来看这个更新操作,

db.archive.updateOne(
    { parentId: "2024111222337",category:"score1" },
    { $set: { content: "cbasbsadhpasdbsaodgsscore" } }
);

其结果如下,更新了一条数据,只花费了13毫秒的时间,因此更新操作速度是很快的。由于这里每一条数据都是唯一数据,因此不测试批量更新

在这里插入图片描述

最后测试删除数据,将这20条数据全部删除,总共花费18毫秒

在这里插入图片描述

6,一亿条数据性能测试

数据通过多线程+批量插入的方式来到一亿条,存储大小15.5g,索引长度是6g

db.archive.countDocuments()  //查询共有多少条数据
100082694

在这里插入图片描述

接下来往里面重新插入一部分数据,往里面插入20条数据,大概花费160多ms,插入数据会导致索引重构,所以耗时久一些,批量插入性能会更快。重新插入的数据可以保证这条数据没被查过,并且知道parentId是什么

db.archive.insertOne({parentId:"20240531101059",category:"score1",content:"abcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxy"})
....

接下来测试查询数据,只需要19ms

db.archive.find({parentId:"20240531101054"},{parentId:1,category:1}) //只返回部分字段
db.archive.find({parentId:"20240531101058"})

在这里插入图片描述

更新数据如下,只需要10ms

db.archive.updateOne(
    { parentId: "20240531101059",category:"score1" },
    { $set: { content: "cbasbsadhpasdbsaodgsscore" } }
);

在这里插入图片描述

7,压测

以下压测都是数据达到1亿之后进行测试的,并且都是使用的2核4g的服务器

在1s内同时1000个线程插入数据,每个线程插入20条数据,中位数24,吞吐量391

在这里插入图片描述

在1s内10000个线程插入数据,也是每个线程批量插入20条数据,可以发现就算是2核4g这么垃圾的轻量级服务器,10000qps也是毫无压力的

在这里插入图片描述

插入数据会破坏索引,相对于修改和查询是更慢的,接下来测试1s内10000个线程同时执行增改查,吞吐量可以达到2251.7

在这里插入图片描述

部分代码片段如下,让10000个线程随机的执行增改查的操作,在1s内是毫无压力的

在这里插入图片描述

8,总结

通过上面的数据以及mongodb的响应来看,mongodb的性能还是非常不错的。看看GPT对这种数据的评价,gpt也认为mongodb是非常合适的。当然不管什么数据和业务,只要其本质是 json 数据,不管json内部结构多复杂,用mongodb都是非常合适的。mongodb还适合存一些订单数据,地理数据,大数据等等,其应用范围是非常广泛的

在这里插入图片描述

以上就是Mongodb亿级数据性能测试和压测的详细内容,更多关于Mongodb数据性能测试的资料请关注脚本之家其它相关文章!

相关文章

  • MongoDB账户密码设置的方法详解

    MongoDB账户密码设置的方法详解

    这篇文章主要给大家介绍了关于MongoDB账户密码设置的相关资料,我们知道mysql在安装的时候需要我们设置一个数据库默认的用户名和密码,mongodb也不例外,需要的朋友可以参考下
    2023-09-09
  • MongoDB 主分片(primary shard)相关总结

    MongoDB 主分片(primary shard)相关总结

    这篇文章主要介绍了MongoDB 主分片(primary shard)相关总结。帮助大家更好的理解和学习使用MongoDB,感兴趣的朋友可以了解下
    2021-03-03
  • MongoDB在Linux系统中的安装与配置指南

    MongoDB在Linux系统中的安装与配置指南

    在这篇文章中,我们将介绍如何在CentOS 7服务器上安装MongoDB,并通过DataX将数据从MongoDB迁移到MySQL数据库,这将包括MongoDB的安装、配置、数据准备以及使用DataX进行数据迁移的详细步骤
    2024-09-09
  • MongoDB集合中的文档管理

    MongoDB集合中的文档管理

    这篇文章介绍了MongoDB集合中文档的管理方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2022-07-07
  • Mongodb多键索引中索引边界的混合问题小结

    Mongodb多键索引中索引边界的混合问题小结

    Mongodb为提高数组的查询效率,针对数组构建了多键索引,而Mongodb在应用多键数组查询时,也通过构建,减少数组查询的数值范围,来提高查询性能,本文结合Mongodb官方文档,阐述Mongodb在使用多键索引时的边界优化,感兴趣的朋友一起看看吧
    2024-07-07
  • MongoDB的分片集群基本配置教程

    MongoDB的分片集群基本配置教程

    MongoDB拥有经典的Sharding架构能将数据分散存储在数个服务器上以作集群,这里我们就来看一下MongoDB的分片集群基本配置教程:
    2016-07-07
  • Mongodb在UPDATE操作中使用$pull的操作方法

    Mongodb在UPDATE操作中使用$pull的操作方法

    在UPDATE中使用$pull操作符,删除数组中的指定元素或删除符合条件的数组元素,本文基于Mongodb的官方文档,介绍使用$pull, 按照指定条件删除数组中的元素,文中通过代码示例介绍的非常详细,需要的朋友可以参考下
    2024-06-06
  • mongodb 中rs.stauts()命令参数解析

    mongodb 中rs.stauts()命令参数解析

    MongoDB的rs.status()命令是查看副本集状态的重要工具,它可以展示副本集中各个成员的角色、健康状态、同步进度等关键信息,本文介绍mongodb 中rs.stauts()命令参数解析,感兴趣的朋友跟随小编一起看看吧
    2024-09-09
  • MongoDB快速入门及其SpringBoot实战教程

    MongoDB快速入门及其SpringBoot实战教程

    MongoDB是一个开源、高性能、无模式的文档型数据库,当初的设计就是用于简化开发和方便扩展,是NoSQL数据库产品中的一种,它支持的数据结构非常松散,是一种类似于JSON的格式叫BSON,本文介绍MongoDB快速入门及其SpringBoot实战,感兴趣的朋友一起看看吧
    2023-12-12
  • mongoDB中CRUD的深入讲解

    mongoDB中CRUD的深入讲解

    这篇文章主要给大家介绍了关于mongoDB中CRUD的相关资料,文中通过示例代码介绍的非常详细,对大家学习或者使用mongoDB具有一定的参考学习价值,需要的朋友们下面来一起学习学习吧
    2019-08-08

最新评论