MySQL全文索引在数据库中的应用和优势(模糊查询不用like+%)

 更新时间:2024年09月07日 11:24:25   作者:你的阿冷丶  
全文索引技术可以有效地从大量文本中检索信息,适用于搜索引擎和电商平台等场景,InnoDB从MySQL5.6开始支持全文索引,使用倒排索引实现,全文检索分为自然语言搜索、布尔搜索和查询扩展搜索三种模式,全文索引提高了模糊查询的效率,优化了基于文本的搜索查询

前言

我们都知道 InnoDB 在模糊查询数据时使用 "%xx" 会导致索引失效,但有时需求就是如此,类似这样的需求还有很多。

例如,搜索引擎需要根基用户数据的关键字进行全文查找,电子商务网站需要根据用户的查询条件,在可能需要在商品的详细介绍中进行查找,这些都不是 B+ 树索引能很好完成的工作。

通过数值比较,范围过滤等就可以完成绝大多数我们需要的查询了。但是,如果希望通过关键字的匹配来进行查询过滤,那么就需要基于相似度的查询,而不是原来的精确数值比较,全文索引就是为这种场景设计的。

全文索引(Full-Text Search)是将存储于数据库中的整本书或整篇文章中的任意信息查找出来的技术。它可以根据需要获得全文中有关章、节、段、句、词等信息,也可以进行各种统计和分析。

在早期的 MySQL 中,InnoDB 并不支持全文检索技术,从 MySQL 5.6 开始,InnoDB 开始支持全文检索通常使用倒排索引(inverted index)来实现,倒排索引同 B+Tree 一样,也是一种索引结构。它在辅助表中存储了单词与单词自身在一个或多个文档中所在位置之间的映射。

这通常利用关联数组实现,拥有两种表现形式:

  • inverted file index:{单词,单词所在文档的id}
  • full inverted index:{单词,(单词所在文档的id,再具体文档中的位置)}

inverted file index 关联数组,这样存储再进行全文查询就简单了,可以直接根据 Documents 得到包含查询关键字的文档。

而 full inverted index 存储的是对,即(DocumentId,Position),相比之下,full inverted index 占用了更多的空间,但是能更好的定位数据,并扩充一些其他搜索特性。

创建全文索引

①创建表时创建全文索引语法如下:

CREATE TABLE table_name ( id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY, author VARCHAR(200), 
title VARCHAR(200), content TEXT(500), FULLTEXT full_index_name (col_name) ) ENGINE=InnoDB;

输入查询语句:

SELECT table_id, name, space from INFORMATION_SCHEMA.INNODB_TABLES
WHERE name LIKE 'test/%';

上述六个索引表构成倒排索引,称为辅助索引表。当传入的文档被标记化时,单个词与位置信息和关联的 DOC_ID,根据单词的第一个字符的字符集排序权重,在六个索引表中对单词进行完全排序和分区。

②在已创建的表上创建全文索引语法如下:

CREATE FULLTEXT INDEX full_index_name ON table_name(col_name);

使用全文索引

MySQL 数据库支持全文检索的查询,全文索引只能在 InnoDB 或 MyISAM 的表上使用,并且只能用于创建 char,varchar,text 类型的列。

其语法如下:

MATCH(col1,col2,...) AGAINST(expr[search_modifier])
search_modifier:
{
    IN NATURAL LANGUAGE MODE
    | IN NATURAL LANGUAGE MODE WITH QUERY EXPANSION
    | IN BOOLEAN MODE
    | WITH QUERY EXPANSION
}

全文搜索使用 MATCH() AGAINST() 语法进行,其中,MATCH() 采用逗号分隔的列表,命名要搜索的列。

AGAINST() 接收一个要搜索的字符串,以及一个要执行的搜索类型的可选修饰符。全文检索分为三种类型:自然语言搜索、布尔搜索、查询扩展搜索,下面将对各种查询模式进行介绍。

Natural Language

自然语言搜索将搜索字符串解释为自然人类语言中的短语,MATCH() 默认采用 Natural Language 模式,其表示查询带有指定关键字的文档。

接下来结合 demo 来更好的理解 Natural Language:

SELECT
    count(*) AS count 
FROM
    `fts_articles` 
WHERE
    MATCH ( title, body ) AGAINST ( 'MySQL' );

上述语句,查询 title,body 列中包含 'MySQL' 关键字的行数量。上述语句还可以这样写:

SELECT
    count(IF(MATCH ( title, body ) 
    against ( 'MySQL' ), 1, NULL )) AS count 
FROM
    `fts_articles`;

上述两种语句虽然得到的结果是一样的,但从内部运行来看,第二句 SQL 的执行速度更快些,因为第一句 SQL(基于 where 索引查询的方式)还需要进行相关性的排序统计,而第二种方式是不需要的。

还可以通过 SQL 语句查询相关性:

SELECT
    *,
    MATCH ( title, body ) against ( 'MySQL' ) AS Relevance 
FROM
    fts_articles;

相关性的计算依据以下四个条件:

  • word 是否在文档中出现
  • word 在文档中出现的次数
  • word 在索引列中的数量
  • 多少个文档包含该 word

对于 InnoDB 存储引擎的全文检索,还需要考虑以下的因素:

  • 查询的 word 在 stopword 列中,忽略该字符串的查询
  • 查询的 word 的字符长度是否在区间 [innodb_ft_min_token_size,innodb_ft_max_token_size] 内

如果词在 stopword 中,则不对该词进行查询,如对 'for' 这个词进行查询,结果如下所示:

SELECT
    *,
    MATCH ( title, body ) against ( 'for' ) AS Relevance 
FROM
    fts_articles;

可以看到,'for'虽然在文档 2,4 中出现,但由于其是 stopword,故其相关性为 0。

参数 innodb_ft_min_token_size 和 innodb_ft_max_token_size 控制 InnoDB 引擎查询字符的长度。

当长度小于 innodb_ft_min_token_size 或者长度大于 innodb_ft_max_token_size 时,会忽略该词的搜索。

在 InnoDB 引擎中,参数 innodb_ft_min_token_size 的默认值是 3,innodb_ft_max_token_size 的默认值是 84。

Boolean

布尔搜索使用特殊查询语言的规则来解释搜索字符串,该字符串包含要搜索的词,它还可以包含指定要求的运算符,例如匹配行中必须存在或不存在某个词,或者它的权重应高于或低于通常情况。

例如,下面的语句要求查询有字符串"Pease"但没有"hot"的文档,其中+和-分别表示单词必须存在,或者一定不存在。

select * from fts_test where MATCH(content) AGAINST('+Pease -hot' IN BOOLEAN MODE);
Boolean 全文检索支持的类型包括:
  • +:表示该 word 必须存在
  • -:表示该 word 必须不存在
  • (no operator):表示该 word 是可选的,但是如果出现,其相关性会更高
  • @distance:表示查询的多个单词之间的距离是否在 distance 之内,distance 的单位是字节,这种全文检索的查询也称为 Proximity Search,如 MATCH(context) AGAINST('"Pease hot"@30' IN BOOLEAN MODE)语句表示字符串 Pease 和 hot 之间的距离需在 30 字节内
  • >:表示出现该单词时增加相关性
  • <:表示出现该单词时降低相关性
  • ~:表示允许出现该单词,但出现时相关性为负
  • * :表示以该单词开头的单词,如 lik*,表示可以是 lik,like,likes
  • " :表示短语

下面是一些 demo,看看 Boolean Mode 是如何使用的。

demo1:+ -

SELECT
    * 
FROM
    `fts_articles` 
WHERE
    MATCH ( title, body ) AGAINST ( '+MySQL -YourSQL' IN BOOLEAN MODE );
上述语句,查询的是包含 'MySQL' 但不包含 'YourSQL' 的信息。

demo2:no operator

SELECT
    * 
FROM
    `fts_articles` 
WHERE
    MATCH ( title, body ) AGAINST ( 'MySQL IBM' IN BOOLEAN MODE );

上述语句,查询的 'MySQL IBM' 没有 '+','-'的标识,代表 word 是可选的,如果出现,其相关性会更高。

demo3:@

SELECT
    * 
FROM
    `fts_articles` 
WHERE
    MATCH ( title, body ) AGAINST ( '"DB2 IBM"@3' IN BOOLEAN MODE );

上述语句,代表 "DB2" ,"IBM"两个词之间的距离在 3 字节之内。

demo4:> <

SELECT
    * 
FROM
    `fts_articles` 
WHERE
    MATCH ( title, body ) AGAINST ( '+MySQL +(>database <DBMS)' IN BOOLEAN MODE );

上述语句,查询同时包含 'MySQL','database','DBMS' 的行信息,但不包含'DBMS'的行的相关性高于包含'DBMS'的行。

demo5: ~

SELECT
    * 
FROM
    `fts_articles` 
WHERE
    MATCH ( title, body ) AGAINST ( 'MySQL ~database' IN BOOLEAN MODE );

上述语句,查询包含 'MySQL' 的行,但如果该行同时包含 'database',则降低相关性。

demo6:*

SELECT
    * 
FROM
    `fts_articles` 
WHERE
    MATCH ( title, body ) AGAINST ( 'My*' IN BOOLEAN MODE );
上述语句,查询关键字中包含'My'的行信息。

demo7:"

SELECT
    * 
FROM
    `fts_articles` 
WHERE
    MATCH ( title, body ) AGAINST ( '"MySQL Security"' IN BOOLEAN MODE );

上述语句,查询包含确切短语 'MySQL Security' 的行信息。

Query Expansion

查询扩展搜索是对自然语言搜索的修改,这种查询通常在查询的关键词太短,用户需要 implied knowledge(隐含知识)时进行。 

例如,对于单词 database 的查询,用户可能希望查询的不仅仅是包含 database 的文档,可能还指那些包含 MySQL、Oracle、RDBMS 的单词,而这时可以使用 Query Expansion 模式来开启全文检索的 implied knowledge。

通过在查询语句中添加 WITH QUERY EXPANSION / IN NATURAL LANGUAGE MODE WITH QUERY EXPANSION 可以开启 blind query expansion(又称为 automatic relevance feedback)。

该查询分为两个阶段:

  • 第一阶段:根据搜索的单词进行全文索引查询
  • 第二阶段:根据第一阶段产生的分词再进行一次全文检索的查询

接着来看一个例子,看看 Query Expansion 是如何使用的。

-- 创建索引
create FULLTEXT INDEX title_body_index on fts_articles(title,body);
-- 使用 Natural Language 模式查询
SELECT
    * 
FROM
    `fts_articles` 
WHERE
    MATCH(title,body) AGAINST('database');

使用 Query Expansion 前查询结果如下:

-- 当使用 Query Expansion 模式查询
SELECT
    * 
FROM
    `fts_articles` 
WHERE
    MATCH(title,body) AGAINST('database' WITH QUERY expansion);

使用 Query Expansion 后查询结果如下:

由于 Query Expansion 的全文检索可能带来许多非相关性的查询,因此在使用时,用户可能需要非常谨慎。

删除全文索引

①直接删除全文索引语法如下:

DROP INDEX full_idx_name ON db_name.table_name;

②使用 alter table 删除全文索引语法如下:

ALTER TABLE db_name.table_name DROP INDEX full_idx_name;

总结

本文从理论与实践结合的角度对 fulltext index 做了介绍。InnoDB 的全文检索在一些简单的搜索场景下还是比较实用的,可以替代 like+%,并且不需要额外依赖其他服务。复杂搜索场景的话,我们还是需要使用 ES 这类搜索引擎。

全文索引技术可以有效地从大量文本中检索信息,适用于搜索引擎和电商平台等场景,InnoDB从MySQL 5.6开始支持全文索引,使用倒排索引实现,全文检索分为自然语言搜索、布尔搜索和查询扩展搜索三种模式,全文索引提高了模糊查询的效率,优化了基于文本的搜索查询。

到此这篇关于MySQL全文索引在数据库中的应用和优势(模糊查询不用like+%)的文章就介绍到这了,更多相关MySQL全文索引与like+%内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 新手把mysql装进docker中碰到的各种问题

    新手把mysql装进docker中碰到的各种问题

    这篇文章主要给大家介绍了新手第一次把mysql装进docker中可能碰到的各种问题,文中通过示例代码介绍的非常详细,对大家学习或者使用mysql具有一定的参考学习价值,需要的朋友们下面来一起学习学习吧
    2019-06-06
  • MySQL笔记之子查询使用介绍

    MySQL笔记之子查询使用介绍

    子查询是将一个查询语句嵌套在另一个查询语句中,内层查询语句的查询结果,可以为外层查询语句提供查询条件
    2013-05-05
  • MySQL数据表基本操作实例详解

    MySQL数据表基本操作实例详解

    这篇文章主要介绍了MySQL数据表基本操作,结合实例形式较为详细的分析了MySQL针对数据表的基本创建、表结构查看、修改、删除等相关操作技巧,需要的朋友可以参考下
    2018-06-06
  • MySQL5.6与5.7版本区别有多大

    MySQL5.6与5.7版本区别有多大

    MySQL是一种关系型数据库管理系统,最常用的版本是5.6和5.7,mysql5.7是5.6的新版本,在没有减少功能的情况下新增了功能与进行了优化,例如新增了新的优化器、原生JSON支持、多源复制,还优化了整体的性能、GIS空间扩展、InnoDB...
    2024-03-03
  • Mysql数据库性能优化之子查询

    Mysql数据库性能优化之子查询

    这篇文章主要介绍了Mysql数据库性能优化之子查询的相关资料,非常不错,具有参考借鉴价值,需要的朋友可以参考下
    2017-01-01
  • Mysql锁机制之行锁、表锁、死锁的实现

    Mysql锁机制之行锁、表锁、死锁的实现

    本文主要介绍了Mysql锁机制之行锁、表锁、死锁的实现,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2022-03-03
  • MySQL数据库导出与导入及常见错误解决

    MySQL数据库导出与导入及常见错误解决

    MySQL数据库导出与导入的过程中将会发生众多不可预知的错误,本文整理了一些常见错误及相应的解决方法,遇到类似情况的朋友可以参考下,希望对大家有所帮助
    2013-07-07
  • MySQL派生表合并优化的原理和实现过程

    MySQL派生表合并优化的原理和实现过程

    本文从一个案例出发梳理了MySQL派生表合并优化的流程实现和优化原理,并对优化前后同一条SQL语句在代码层面的类实例映射关系进行了对比,这篇文章主要介绍了MySQL派生表合并优化的原理和实现,需要的朋友可以参考下
    2024-07-07
  • Mysql中使用count加条件统计的实现示例

    Mysql中使用count加条件统计的实现示例

    本文主要介绍了Mysql中使用count加条件统计的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2022-07-07
  • mysql查看用户权限常用的方法

    mysql查看用户权限常用的方法

    MySQL是一个流行的开源关系型数据库管理系统,具有强大的功能和灵活的用户权限控制机制,这篇文章主要给大家介绍了关于mysql查看用户权限常用的方法,需要的朋友可以参考下
    2024-03-03

最新评论