缓冲区溢出解密二
互联网 发布时间:2008-10-08 19:04:07 作者:佚名 我要评论
而如果ESP被PUSH到堆栈,这是堆栈的表示:
|_parametre_I___| EBP 12
|_parametre II__| EBP 8
|_return adress_| EBP 4
|___saved_ESP___| EBP ESP
|_local var I __| EBP-4
|_local var II__| EBP-8
在上面的图中,变量I 和II是
而如果ESP被PUSH到堆栈,这是堆栈的表示:
|_parametre_I___| EBP 12
|_parametre II__| EBP 8
|_return adress_| EBP 4
|___saved_ESP___| EBP ESP
|_local var I __| EBP-4
|_local var II__| EBP-8
在上面的图中,变量I 和II是传递给函数的参数。在返回地址和保存ESP之后,var I和II是函数的局部变量。现在,如果我们总结所有我们所讲的,当调用一个函数的时候:
1.我们保存老的堆栈指针,PUSH它到堆栈 2.我们保存下一个指令的地址(返回地址),PUSH它到堆栈。3.我们开始执行程序指令。
当我们调用一个函数时,上面3步都做了。
让我们在一个生动的例子中看堆栈的操作。
a.c :
void f(int a, int b, int c)
{
char z[4];
}
void main()
{
f(1, 2, 3);
} 用-g标志编译这个从而能够调试:
[murat@victim murat]$ gcc -g a.c -o a
让我们看看这里发生了什么:
[murat@victim murat]$ gdb -q ./a
(gdb) disas main
Dump of assembler code for function main:
0x8048448 : pushl 雙
0x8048449 : movl %esp,雙
0x804844b : pushl $0x3
0x804844d : pushl $0x2
0x804844f : pushl $0x1
0x8048451 : call 0x8048440
0x8048456 : addl $0xc,%esp
0x8048459 : leave
0x804845a : ret
End of assembler dump.
(gdb)
以上可见,main()函数中第一个指令是:
0x8048448 : pushl 雙
它支持老的指针,并把它压入堆栈。接着,拷贝老的堆栈指针倒ebp寄存器:
0x8048449 : movl %esp,雙
因而,从那时起,在函数中,我们将用EBP引用函数的局部变量。这两个指令被称为”程序引入”。接着,我们反序PUSH函数f()的参数到堆栈中。
0x804844b : pushl $0x3
0x804844d : pushl $0x2
0x804844f : pushl $0x1
我们调用这个函数:
0x8048451 : call 0x8048440
如我们已经通过CALL调用解释的那样,我们PUSH指令addl $0xc,%esp的地址0x8048456到堆栈。函数RET调用后,我们加12或者十六进制中的0xc(因为我们推入3个参数到堆栈中,每一个分配了4个字节(整型))。 接着我们离开main()函数,并且返回:
0x8048459 : leave
0x804845a : ret
好,在函数f()内部发生了什么呢?
(gdb)
disas f
Dump of assembler code for function f:
0x8048440 : pushl 雙
0x8048441 : movl %esp,雙
0x8048443 : subl $0x4,%esp
0x8048446 : leave
0x8048447 : ret
End of assembler dump.
(gdb)
开始两个指令都是一样的。它们是程序引入。接着我们看a:
0x8048443 : subl $0x4,%esp
从ESP减去了4个字节。这是为局部变量z分配空间。记得我们定义它为char z[4]?它是一个4字节的字符数组。最后,在末尾,函数返回:
0x8048446 : leave
0x8048447 : ret
好,让我们看另外一个例子:
b.c :
void f(int a, int b, int c)
{
char foo1[6];
char foo2[9];
}
void main()
{
f(1,2,3);
}
编译并且启动gdb,解析f:
[murat@victim murat]$ gcc -g b.c -o b
[murat@victim murat]$ gdb -q ./b
(gdb) disas f
Dump of assembler code for function f:
0x8048440 : pushl 雙
0x8048441 : movl %esp,雙
0x8048443 : subl $0x14,%esp
0x8048446 : leave
0x8048447 : ret
End of assembler dump.
(gdb)
可以看出,从ESP中减去了0x14(20字节),尽管foo1和foo2的总长度只有9 6=15。这样的原因是,内存,还有堆栈,在4字节框架下编址。这意味着,你不能简单的PUSH 1字节数据到堆栈中。或者4字节或者为空。 f()北调用时,堆栈将象这样:
|_______$1_______| EBP 16
|_______$2_______| EBP 12
|_______$3_______| EBP 8
|_return address_| EBP 4
|___saved_ESP____| EBP ESP
|______foo1______| EBP-4
|______foo1______| EBP-8
|______foo2______| EBP-12
|______foo2______| EBP-16
|______foo2______| EBP-20
你可以相信,当我们对f001装载超过8个字节对和对foo2超过12个字节,我们将溢出他们的空间。如果你对foo1写入超过4个字节,你将重写被保护的EBP,而且……如果你写入超过4个字节,你将重写返回地址……而这不正是我们都想要的吗?这是内存溢出的基础……让我设法用一段简单的代码稍微阐明一下这种现象,假设我们有这样的代码:
c.c :
#include
void f(char *str)
{
char foo[16];
strcpy(foo, str);
}
void main()
{
char large_one[256];
memset(large_one, 'A', 255);
f(large_one);
}
[murat@victim murat]$ make c
cc -W -Wall -pedantic -g c.c -o c
[murat@victim murat]$ ./c
Segmentation fault (core dumped)
[murat@victim murat]$
我们在上面做的是简单的写255字节到一个只能容纳16字节的数组里。我们传递了一个256字节的大数组作为一个参数给f()函数。在函数内部,没有边界检测我们拷贝了整个large_one到foo,溢出了foo和其它数据。因此缓冲区被填写了,同样的strcpy()用A填写了内存的其它部分,包括返回地址。
这里是用gdb生成核文件代码的检查:
[murat@victim murat]$ gdb -q c core
Core was generated by `./c'.
Program terminated with signal 11, Segmentation fault.
find_solib: Can't read pathname for load map: Input/output error
#0 0x41414141 in ?? ()
(gdb)
可以看出,CPU在EIP中看到0x41414141(041是字母A的十六进制ASCII码),试图存储和执行此处的指令。然而,0x41414141不是我们的程序被允许存储的内存地址。最后操作系统发了一个SIGSEGV(Segmentation Violation)段侵犯信号给程序并且停止了任何进一步的操作。
我们调用f()时,堆栈看起来象这样:
|______*str______| EBP 8
|_return address_| EBP 4
|___saved_ESP____| EBP ESP
|______foo1______| EBP-4
|______foo1______| EBP-8
|______foo1______| EBP-12
|______foo1______| EBP-16
strcpy()从foo1的开头,EBP-16开始,拷贝large_one到foo,没有边界检查,用A填充了整个堆栈。
现在我们能够重写返回地址,如果我们放一些其它的内存段地址,我们能在那里执行指令码?答案是肯定的。假如我们放了一些 /bin/sh spawn出的指令在一些内存地址中,而我们把这个地址放到我们溢出的这个函数返回地址中,我们就能spawn出一个shell,而且很有可能,既然你已经对setuid二进制程序感兴趣了,我们将spawn出一个root shell。
相关文章
- “CMOS密码”就是通常所说的“开机密码”,主要是为了防止别人使用自已的计算机,设置的一个屏障2023-08-01
QQScreenShot之逆向并提取QQ截图--OCR和其他功能
上一篇文章逆向并提取QQ截图没有提取OCR功能, 再次逆向我发现是可以本地调用QQ的OCR的,但翻译按钮确实没啥用, 于是Patch了翻译按钮事件, 改为了将截图用百度以图搜图搜索.2023-02-04- QQ截图是我用过的最好用的截图工具, 由于基本不在电脑上登QQ了, 于是就想将其提取出独立版目前除了屏幕录制功能其他都逆出来了, 在此分享一下2023-02-04
非系统分区使用BitLocker加密导致软件无法安装的解决方法
很多电脑用户在考虑自己电脑磁盘分区安全时会采用 Windows 自带的 BitLocker 加密工具对电脑磁盘分区进行加密。但有些人加密后就会忘记自己设置的密码从而导致在安装其它软2020-11-25防止离职员工带走客户、防止内部员工泄密、避免华为员工泄密事件的发生
这篇文章为大家详细介绍了如何才能防止离职员工带走客户、防止内部员工泄密、避免华为员工泄密事件的发生,具有一定的参考价值,感兴趣的小伙伴们可以参考一下2017-06-27彻底防止计算机泄密、重要涉密人员离职泄密、涉密人员离岗离职前防范举
近些年企业商业机密泄漏的事件屡有发生,这篇文章主要教大家如何彻底防止计算机泄密、重要涉密人员离职泄密、告诉大家涉密人员离岗离职前的防范举措,具有一定的参考价值,2017-06-27- 最近有电脑用户反应量子计算机可以破解下载的所有的加密算法吗?其实也不是不可以,下面虚拟就为大家讲解买台量子计算机,如何分分钟破解加密算法2016-09-26
怎么破解Webshell密码 Burpsuite破解Webshell密码图文教程
webshell是以asp、php、jsp或者cgi等网页文件形式存在的一种命令执行环境,一种网页后门。黑客通常会通过它控制别人网络服务器,那么怎么破解webshell密码呢?一起来看看吧2016-09-19- 本文讨论了针对Linux系统全盘加密的冷启动攻击,大家都认为这种攻击是可行的,但执行这么一次攻击有多难?攻击的可行性有多少呢?需要的朋友可以参考下2015-12-28
防止泄露公司机密、企业数据防泄密软件排名、电脑文件加密软件排行
面对日渐严重的内部泄密事件,我们如何守护企业的核心信息,如何防止内部泄密也就成了摆在各个企业领导面前的一大问题。其实,针对内网安全,防止内部信息泄漏早已有了比较2015-12-17
最新评论