Golang sync.Pool的源码解析

 更新时间:2023年05月29日 11:48:56   作者:胡大海  
Pool是用于存放临时对象的集合,这些对象是为了后续的使用,以达到复用对象的效果,本文将详解解析sync.Pool 源码,需要的朋友可以参考下

实际使用

Pool 是用于存放临时对象的集合,这些对象是为了后续的使用,以达到复用对象的效果。其目的是缓解频繁创建对象造成的gc压力。在许多开源组件中均使用了此组件,例如boltgin 等。

下面是一组在非并发和并发场景是否使用Pool的benchmark:

package pool
import (
	"io/ioutil"
	"sync"
	"testing"
)
type Data [1024]byte
// 直接创建对象
func BenchmarkWithoutPool(t *testing.B) {
	for i := 0; i < t.N; i++ {
		var data Data
		ioutil.Discard.Write(data[:])
	}
}
// 使用Pool复用对象
func BenchmarkWithPool(t *testing.B) {
	pool := &sync.Pool{
		// 若没有可用对象,则调用New创建一个对象
		New: func() interface{} {
			return &Data{}
		},
	}
	for i := 0; i < t.N; i++ {
		// 取
		data := pool.Get().(*Data)
		// 用
		ioutil.Discard.Write(data[:])
		// 存
		pool.Put(data)
	}
}
// 并发的直接创建对象
func BenchmarkWithoutPoolConncurrency(t *testing.B) {
	t.RunParallel(func(pb *testing.PB) {
		for pb.Next() {
			var data Data
			ioutil.Discard.Write(data[:])
		}
	})
}
// 使用Pool并发的复用对象
func BenchmarkWithPoolConncurrency(t *testing.B) {
	pool := &sync.Pool{
		// 若没有可用对象,则调用New创建一个对象
		New: func() interface{} {
			return &Data{}
		},
	}
	t.RunParallel(func(pb *testing.PB) {
		for pb.Next() {
			// 取
			data := pool.Get().(*Data)
			// 用
			ioutil.Discard.Write(data[:])
			// 存
			pool.Put(data)
		}
	})
}

实际运行效果如下图所示,可以看出sync.Pool 不管是在并发还是非并发场景下,在速度和内存分配上表现均远远优异于直接创建对象。

goos: darwin
goarch: amd64
pkg: leetcode/pool
cpu: Intel(R) Core(TM) i5-1038NG7 CPU @ 2.00GHz
BenchmarkWithoutPool-8                   7346660               148.1 ns/op          1024 B/op          1 allocs/op
BenchmarkWithPool-8                     80391398                14.41 ns/op            0 B/op          0 allocs/op
BenchmarkWithoutPoolConncurrency-8       7893248               153.3 ns/op          1024 B/op          1 allocs/op
BenchmarkWithPoolConncurrency-8         363329767                4.245 ns/op           0 B/op          0 allocs/op
PASS
ok      leetcode/pool   6.590s

实现原理

Pool 基本结构如下

type Pool struct {
	noCopy noCopy
	local     unsafe.Pointer // local fixed-size per-P pool, actual type is [P]poolLocal
	localSize uintptr        // size of the local array
	victim     unsafe.Pointer // local from previous cycle
	victimSize uintptr        // size of victims array
	// New optionally specifies a function to generate
	// a value when Get would otherwise return nil.
	// It may not be changed concurrently with calls to Get.
	New func() any
}

其中最为主要的是属性 local ,是一个和P数量一致的切片,每个P的id都对应切片中的一个元素。为了高效的利用CPU多核,元素中间填充了pad,具体细节可以参考后续的 CacheLine

// Local per-P Pool appendix.
type poolLocalInternal struct {
	private any       // Can be used only by the respective P.
	shared  poolChain // Local P can pushHead/popHead; any P can popTail.
}
type poolLocal struct {
	poolLocalInternal
	// Prevents false sharing on widespread platforms with
	// 128 mod (cache line size) = 0 .
	pad [128 - unsafe.Sizeof(poolLocalInternal{})%128]byte
}

CacheLine

CPU 缓存会按照CacheLine大小来从内存复制数据,相邻的数据可能会处于同一个 CacheLine 。如果这些数据被多核使用,那么系统需要耗费较大的资源来保持各个cpu缓存中数据的一致性。当一个线程修改某个 CacheLine 中数据的时候,其他读此 CacheLine 数据的线程会被锁给阻塞。

下面是一组在并发场景下原子性的操作对象Age属性的benchmark:

import (
	"sync/atomic"
	"testing"
	"unsafe"
)
type StudentWithCacheLine struct {
	Age uint32
	_   [128 - unsafe.Sizeof(uint32(0))%128]byte
}
// 有填充的场景下,并发修改Age
func BenchmarkWithCacheLine(b *testing.B) {
	count := 10
	students := make([]StudentWithCacheLine, count)
	b.RunParallel(func(pb *testing.PB) {
		for pb.Next() {
			for j := 0; j < count; j++ {
				atomic.AddUint32(&students[j].Age, 1)
			}
		}
	})
}
type StudentWithoutCacheLine struct {
	Age uint32
}
// 无填充的场景下,并发修改Age
func BenchmarkWithoutCacheLine(b *testing.B) {
	count := 10
	students := make([]StudentWithoutCacheLine, count)
	b.RunParallel(func(pb *testing.PB) {
		for pb.Next() {
			for j := 0; j < count; j++ {
				atomic.AddUint32(&students[j].Age, 1)
			}
		}
	})
}

StudentWithCacheLine 中填充了pad来保证切片中不同的Age处于不同的CacheLine, StudentWithoutCacheLine 中的Age未做任何处理。通过图可以知道根据 CacheLine 填充了pad的Age 原子操作速度远远快于未做任何处理的。

goos: darwin
goarch: amd64
pkg: leetcode/pool
cpu: Intel(R) Core(TM) i5-1038NG7 CPU @ 2.00GHz
BenchmarkWithCacheLine-8        17277380                70.18 ns/op            0 B/op          0 allocs/op
BenchmarkWithoutCacheLine-8      8916874               133.8 ns/op             0 B/op          0 allocs/op

生产消费者模型

Pool的高性能不仅仅使用CacheLine 避免了多核之间的数据竞争,还根据GMP模型使用了生产者消费者模型来减少数据竞争,每个P都对应一个poolLocalInternal 。以较为复杂的Get的流程,取数流程如下:

// Get selects an arbitrary item from the Pool, removes it from the
// Pool, and returns it to the caller.
// Get may choose to ignore the pool and treat it as empty.
// Callers should not assume any relation between values passed to Put and
// the values returned by Get.
//
// If Get would otherwise return nil and p.New is non-nil, Get returns
// the result of calling p.New.
func (p *Pool) Get() any {
	if race.Enabled {
		race.Disable()
	}
	// 1. 找到当前goroutine所在的P对应的poolLocalInternal和P对应的id
	l, pid := p.pin()
	x := l.private
	l.private = nil
  // 2. 如果private是空,在从shared进行popHead
	if x == nil {
		// Try to pop the head of the local shard. We prefer
		// the head over the tail for temporal locality of
		// reuse.
		// 3. 尝试从shared上取值
		x, _ = l.shared.popHead()
		// 4. 如果还如空,则尝试从其他P的poolLocalInternal或者victim中获取
		if x == nil {
			x = p.getSlow(pid)
		}
	}
	runtime_procUnpin()
	if race.Enabled {
		race.Enable()
		if x != nil {
			race.Acquire(poolRaceAddr(x))
		}
	}
	// 5. 如果还如空,则直接使用New初始化一个
	if x == nil && p.New != nil {
		x = p.New()
	}
	return x
}
  • 优先在当前goroutine所在P对应的 poolLocalInternal 上找,先找private,再找 shared

  • 判断private是否有值。对于每个P来说是单线程的,取 private 的时候是不用锁,仅仅简单判断即可。如果有值直接返回即可;如果为空,再查找 shared

  • 查看 shared 是否有值。shared是一个双向链表,链起来的是ringbuf(环形数组),在添加ringbuf的时候,其大小是前一个的两倍。

    对于goroutine来说,既是当前P上取值的消费者,又是当前P上存值的生产者。在这两种场景是使用方法分别是:取值使用**popHead**;存值使用**pushHead** 。均是从 head 取数据。

// poolChain is a dynamically-sized version of poolDequeue.
//
// This is implemented as a doubly-linked list queue of poolDequeues
// where each dequeue is double the size of the previous one. Once a
// dequeue fills up, this allocates a new one and only ever pushes to
// the latest dequeue. Pops happen from the other end of the list and
// once a dequeue is exhausted, it gets removed from the list.
type poolChain struct {
	// head is the poolDequeue to push to. This is only accessed
	// by the producer, so doesn't need to be synchronized.
	head *poolChainElt
	// tail is the poolDequeue to popTail from. This is accessed
	// by consumers, so reads and writes must be atomic.
	tail *poolChainElt
}
type poolChainElt struct {
	poolDequeue
	// next and prev link to the adjacent poolChainElts in this
	// poolChain.
	//
	// next is written atomically by the producer and read
	// atomically by the consumer. It only transitions from nil to
	// non-nil.
	//
	// prev is written atomically by the consumer and read
	// atomically by the producer. It only transitions from
	// non-nil to nil.
	next, prev *poolChainElt
}
  • 如果 privateshared 均没值,就尝试从其他 P 的 poolLocalInternal 上取值。

    这个时候就是goroutine扮演的就是消费者的角色了,使用的方式是**popTail。**从 tail 取数据。

    如果其他poolLocalInternal 上也没有值的话,就需要从victim中取值了。这个 victim 就是跨越 GC 遗留下的数据。

  • 如果都没有的话,就只能使用 New 创建一个新的值了。

此模型减少了数据的竞争,保证了CAS的高效率。对于处于一个P上的多个goroutine来说是单线程的,数据之间不会有竞争关系。每个goroutine取值的时候,优先从对应P上的链表头部取值。只有在链表无数据的时候,才会尝试从其他P上的对应的链表尾部取值。也就是说出现竞争的可能性的地方在于,一个goruotine从链表头部取值或者塞值,另外一个goroutine从链表尾部取值,两者出现冲突的可能性较小。

结论

总的来说Pool在热点数据竞争上做了很多优化,比如CacheLine、GMP、Ringbuf,CAS;另外还跨越GC周期的缓存数据。

本文主要就CacheLine和生产者消费者模式做了介绍,其他部分感兴趣的话可以自行查看源码。

以上就是Golang sync.Pool的源码解析的详细内容,更多关于Go sync.Pool源码的资料请关注脚本之家其它相关文章!

相关文章

  • Go中Channel发送和接收操作指南

    Go中Channel发送和接收操作指南

    在golang中channel属于较为核心的一个功能,尤其在go协程中,channel功能尤为重要,下面这篇文章主要给大家介绍了关于Go中Channel发送和接收操作的相关资料,需要的朋友可以参考下
    2021-08-08
  • Go interface{} 转切片类型的实现方法

    Go interface{} 转切片类型的实现方法

    本文主要介绍了Go interface{} 转切片类型的实现方法,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2022-02-02
  • 基于Go语言实现分金币游戏

    基于Go语言实现分金币游戏

    这篇文章主要为大家详细介绍了如何利用Go语言实现分金币游戏,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-03-03
  • go goroutine 怎样进行错误处理

    go goroutine 怎样进行错误处理

    在 Go 语言程序开发中,goroutine 的使用是比较频繁的,因此在日常编码的时候 goroutine 里的错误处理,怎么做会比较好呢,本文就来详细介绍一下
    2021-07-07
  • Golang中String,rune和byte的相互转换

    Golang中String,rune和byte的相互转换

    Go语言中,string就是只读的采用utf8编码的字节切片,rune是int32的别名,代表字符的Unicode编码,这篇文章主要介绍了Golang中String,rune和byte的相互转换,感兴趣的小伙伴可以了解一下
    2023-10-10
  • gRPC中拦截器的使用详解

    gRPC中拦截器的使用详解

    这篇文章主要介绍了gRPC中拦截器的使用详解,本次主要介绍在gRPC中使用拦截器,包括一元拦截器和流式拦截器,在拦截器中添加JWT认证,客户端登录之后会获得token,请求特定的API时候需要带上token才能访问,需要的朋友可以参考下
    2023-10-10
  • GoFrame框架gcache的缓存控制淘汰策略实践示例

    GoFrame框架gcache的缓存控制淘汰策略实践示例

    这篇文章主要为大家介绍了GoFrame框架gcache的缓存控制淘汰策略的实践示例,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-06-06
  • axios gin的GET和POST请求实现示例

    axios gin的GET和POST请求实现示例

    这篇文章主要为大家介绍了axios gin的GET和POST请求实现示例,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步早日升职加薪
    2022-04-04
  • Go语言实现机器大小端判断代码分享

    Go语言实现机器大小端判断代码分享

    这篇文章主要介绍了Go语言实现机器大小端判断代码分享,本文直接给出实现代码,需要的朋友可以参考下
    2014-10-10
  • go语言实现sqrt的方法

    go语言实现sqrt的方法

    这篇文章主要介绍了go语言实现sqrt的方法,实例分析了Go语言实现计算平方根的技巧,需要的朋友可以参考下
    2015-03-03

最新评论