Golang内存管理之内存逃逸分析

 更新时间:2023年07月04日 08:26:28   作者:IguoChan  
逃逸分析是指由编译器决定内存分配的位置,不需要程序员指定,这篇文章主要为大家详细介绍了Golang中内存逃逸分析的几种方法,需要的可以参考一下

0. 简介

前面我们针对Go中堆和栈的内存都做了一些分析,现在我们来分析一下Go的内存逃逸。

学习过C语言的都知道,在C栈区域会存放函数的参数、局部变量等,而这些局部变量的地址是不能返回的,除非是局部静态变量地址,字符串常量地址或者动态分配的地址,因为程序调用完函数后,局部变量会随着此函数的栈帧一起被释放。而对于程序员主动申请的内存则存储在堆上,需要使用malloc等函数进行申请,同时也需要使用free等函数释放,由程序员进行管理,而申请内存后如果没有释放,就有可能造成内存泄漏。

但是在Go中,程序员根本无需感知数据是在栈(Go栈)上,还是在堆上,因为编译器会帮你承担这一切,将内存分配到栈或者堆上。在编译器优化中,逃逸分析是用来决定指针动态作用域的方法。Go语言的编译器使用逃逸分析决定哪些变量应该分配在栈上,哪些变量应该分配在堆上,包括使用newmake和字面量等方式隐式分配的内存,Go语言逃逸分析遵循以下两个不变性:

  • 指向栈对象的指针不能存在于堆中;
  • 指向栈对象的指针不能在栈对象回收后存活;

逃逸分析是在编译阶段进行的,可以通过go build -gcflags="-m -m -l"命令查到逃逸分析的结果,最多可以提供4个-m, m 越多则表示分析的程度越详细,一般情况下我们可以采用两个-m分析。使用-l禁用掉内联优化,只关注逃逸优化即可。

1. 几种逃逸分析

1.1 函数返回局部变量指针

package main
func Add(x, y int) *int {
   res := 0
   res = x + y
   return &res
}
func main() {
   Add(1, 2)
}

逃逸分析结果如下:

$ go build -gcflags="-m -m -l" ./main.go
# command-line-arguments
./main.go:4:2: res escapes to heap:
./main.go:4:2:   flow: ~r2 = &res:
./main.go:4:2:     from &res (address-of) at ./main.go:6:9
./main.go:4:2:     from return &res (return) at ./main.go:6:2
./main.go:4:2: moved to heap: res
note: module requires Go 1.18

分析结果很明显,函数返回的局部变量是一个指针变量,当函数Add执行结束后,对应的栈帧就会被销毁,引用返回到函数之外,如果在外部解引用这个地址,就会导致程序访问非法内存,所以编译器会经过逃逸分析后在堆上分配内存。

1.2 interface(any)类型逃逸

package main
import (
   "fmt"
)
func main() {
   str := "hello world"
   fmt.Printf("%v\n", str)
}

逃逸分析如下:

$ go build -gcflags="-m -m -l" ./main.go
# command-line-arguments
./main.go:9:13: str escapes to heap:
./main.go:9:13:   flow: {storage for ... argument} = &{storage for str}:
./main.go:9:13:     from str (spill) at ./main.go:9:13
./main.go:9:13:     from ... argument (slice-literal-element) at ./main.go:9:12
./main.go:9:13:   flow: {heap} = {storage for ... argument}:
./main.go:9:13:     from ... argument (spill) at ./main.go:9:12
./main.go:9:13:     from fmt.Printf("%v\n", ... argument...) (call parameter) at ./main.go:9:12
./main.go:9:12: ... argument does not escape
./main.go:9:13: str escapes to heap

通过这个分析你可能会认为str escapes to heap表示这个str逃逸到了堆,但是却没有上一节中返回值中明确写上moved to heap: res,那实际上str是否真的逃逸到了堆上呢?

escapes to heap vs moved to heap

我们可以写如下代码试试:

package main
import "fmt"
func main() {
   str := "hello world"
   str1 := "nihao!"
   fmt.Printf("%s\n", str)
   println(&str)
   println(&str1)
}

其逃逸分析和上面的没有区别:

$ go build -gcflags="-m -m -l" ./main.go
# command-line-arguments
./main.go:8:13: str escapes to heap:
./main.go:8:13:   flow: {storage for ... argument} = &{storage for str}:
./main.go:8:13:     from str (spill) at ./main.go:8:13
./main.go:8:13:     from ... argument (slice-literal-element) at ./main.go:8:12
./main.go:8:13:   flow: {heap} = {storage for ... argument}:
./main.go:8:13:     from ... argument (spill) at ./main.go:8:12
./main.go:8:13:     from fmt.Printf("%s\n", ... argument...) (call parameter) at ./main.go:8:12
./main.go:8:12: ... argument does not escape
./main.go:8:13: str escapes to heap
note: module requires Go 1.18

但是,str1str二者的地址却是明显相邻的,那是怎么回事呢?

$ go run main.go
hello world
0xc00009af50
0xc00009af40

如果我们将上述代码的第8行fmt.Printf("%s\n", str)改为fmt.Printf("%p\n", &str),则逃逸分析如下,发现多了一行moved to heap: str

$ go build -gcflags="-m -m -l" ./main.go
# command-line-arguments
./main.go:6:2: str escapes to heap:
./main.go:6:2:   flow: {storage for ... argument} = &str:
./main.go:6:2:     from &str (address-of) at ./main.go:8:21
./main.go:6:2:     from &str (interface-converted) at ./main.go:8:21
./main.go:6:2:     from ... argument (slice-literal-element) at ./main.go:8:12
./main.go:6:2:   flow: {heap} = {storage for ... argument}:
./main.go:6:2:     from ... argument (spill) at ./main.go:8:12
./main.go:6:2:     from fmt.Printf("%p\n", ... argument...) (call parameter) at ./main.go:8:12
./main.go:6:2: moved to heap: str
./main.go:8:12: ... argument does not escape
note: module requires Go 1.18

再看运行结果,发现看起来str的地址看起来像逃逸到了堆,毕竟和str1的地址明显不同:

$ go run main.go
0xc00010a210
0xc00010a210
0xc000106f50

参考如下解释

When the escape analysis says "b escapes to heap", it means that the values in b are written to the heap. So anything referenced by b must be in the heap also. b itself need not be.

翻译过来大意是:当逃逸分析输出“b escapes to heap”时,意思是指存储在b中的值逃逸到堆上了,即任何被b引用的对象必须分配在堆上,而b自身则不需要;如果b自身也逃逸到堆上,那么逃逸分析会输出“&b escapes to heap”。

由于字符串本身是存储在只读存储区,我们使用切片更能表现以上的特性。

无逃逸

package main
import (
   "reflect"
   "unsafe"
)
func main() {
   var i int
   i = 10
   println("&i", &i)
   b := []int{1, 2, 3, 4, 5}
   println("&b", &b) // b这个对象的地址
   println("b", unsafe.Pointer((*reflect.SliceHeader)(unsafe.Pointer(&b)).Data)) // b的底层数组地址
}

逃逸分析是:

$ go build -gcflags="-m -m -l" ./main.go
# command-line-arguments
./main.go:12:12: []int{...} does not escape
note: module requires Go 1.18

打印结果:

$ go run main.go
&i 0xc00009af20
&b 0xc00009af58
b 0xc00009af28

可以看到,以上分析无逃逸,且&i b &b地址连续,可以明显看到都在栈中。

切片底层数组逃逸

我们新增一个fmt包的打印:

package main
import (
   "fmt"
   "reflect"
   "unsafe"
)
func main() {
   var i int
   i = 10
   println("&i", &i)
   b := []int{1, 2, 3, 4, 5}
   println("&b", &b) // b这个对象的地址
   println("b", unsafe.Pointer((*reflect.SliceHeader)(unsafe.Pointer(&b)).Data)) // b的底层数组地址
   fmt.Println(b) // 多加了这行
}

逃逸分析如下:

$ go build -gcflags="-m -m -l" ./main.go
# command-line-arguments
./main.go:16:13: b escapes to heap:
./main.go:16:13:   flow: {storage for ... argument} = &{storage for b}:
./main.go:16:13:     from b (spill) at ./main.go:16:13
./main.go:16:13:     from ... argument (slice-literal-element) at ./main.go:16:13
./main.go:16:13:   flow: {heap} = {storage for ... argument}:
./main.go:16:13:     from ... argument (spill) at ./main.go:16:13
./main.go:16:13:     from fmt.Println(... argument...) (call parameter) at ./main.go:16:13
./main.go:13:12: []int{...} escapes to heap:
./main.go:13:12:   flow: b = &{storage for []int{...}}:
./main.go:13:12:     from []int{...} (spill) at ./main.go:13:12
./main.go:13:12:     from b := []int{...} (assign) at ./main.go:13:4
./main.go:13:12:   flow: {storage for b} = b:
./main.go:13:12:     from b (interface-converted) at ./main.go:16:13
./main.go:13:12: []int{...} escapes to heap
./main.go:16:13: ... argument does not escape
./main.go:16:13: b escapes to heap
note: module requires Go 1.18

可以发现,出现了b escapes to heap,然后查看打印:

$ go run main.go
&i 0xc000106f38
&b 0xc000106f58
b 0xc000120030
[1 2 3 4 5]

可以发现,b的底层数组发生了逃逸,但是b本身还是在栈中。

切片对象同样发生逃逸

package main
import (
   "fmt"
   "reflect"
   "unsafe"
)
func main() {
   var i int
   i = 10
   println("&i", &i)
   b := []int{1, 2, 3, 4, 5}
   println("&b", &b) // b这个对象的地址
   println("b", unsafe.Pointer((*reflect.SliceHeader)(unsafe.Pointer(&b)).Data)) // b的底层数组地址
   fmt.Println(&b) // 修改这行
}

如上,将fmt.Println(b)改为fmt.Println(&b),逃逸分析如下:

$ go build -gcflags="-m -m -l" ./main.go
# command-line-arguments
./main.go:13:2: b escapes to heap:
./main.go:13:2:   flow: {storage for ... argument} = &b:
./main.go:13:2:     from &b (address-of) at ./main.go:16:14
./main.go:13:2:     from &b (interface-converted) at ./main.go:16:14
./main.go:13:2:     from ... argument (slice-literal-element) at ./main.go:16:13
./main.go:13:2:   flow: {heap} = {storage for ... argument}:
./main.go:13:2:     from ... argument (spill) at ./main.go:16:13
./main.go:13:2:     from fmt.Println(... argument...) (call parameter) at ./main.go:16:13
./main.go:13:12: []int{...} escapes to heap:
./main.go:13:12:   flow: b = &{storage for []int{...}}:
./main.go:13:12:     from []int{...} (spill) at ./main.go:13:12
./main.go:13:12:     from b := []int{...} (assign) at ./main.go:13:4
./main.go:13:2: moved to heap: b
./main.go:13:12: []int{...} escapes to heap
./main.go:16:13: ... argument does not escape
note: module requires Go 1.18

发现多了moved to heap: b这行,然后看地址打印:

$ go run main.go
&i 0xc00006af48
&b 0xc00000c030
b 0xc00001a150
&[1 2 3 4 5]

发现不仅底层数组发生了逃逸,连b这个对象本身也发生了逃逸。

所以可以总结下来就是:

  • escapes to heap:表示这个对象里面的指针对象逃逸到堆中;
  • moved to heap:表示对象本身逃逸到堆中,根据指向栈对象的指针不能存在于堆中这一准则,该对象里面的指针对象特必然逃逸到堆中。

1.3 申请栈空间过大

package main
import (
   "reflect"
   "unsafe"
)
func main() {
   var i int
   i = 10
   println("&i", &i)
   b := make([]int, 0)
   println("&b", &b) // b这个对象的地址
   println("b", unsafe.Pointer((*reflect.SliceHeader)(unsafe.Pointer(&b)).Data))
   b1 := make([]byte, 65536)
   println("&b1", &b1) // b1这个对象的地址
   println("b1", unsafe.Pointer((*reflect.SliceHeader)(unsafe.Pointer(&b1)).Data))
   var a [1024*1024*10]byte
   _ = a
}

可以发现逃逸分析显示没有发生逃逸:

$ go build -gcflags="-m -m -l" ./main.go
# command-line-arguments
./main.go:13:11: make([]int, 0) does not escape
./main.go:17:12: make([]byte, 65536) does not escape
note: module requires Go 1.18

如果将切片和数组的长度都增加1,则会发生逃逸。

b1 := make([]byte, 65537)
var a [1024*1024*10 + 1]byte

逃逸分析:

$ go build -gcflags="-m -m -l" ./main.go
# command-line-arguments
./main.go:21:6: a escapes to heap:
./main.go:21:6:   flow: {heap} = &a:
./main.go:21:6:     from a (too large for stack) at ./main.go:21:6
./main.go:17:12: make([]byte, 65537) escapes to heap:
./main.go:17:12:   flow: {heap} = &{storage for make([]byte, 65537)}:
./main.go:17:12:     from make([]byte, 65537) (too large for stack) at ./main.go:17:12
./main.go:21:6: moved to heap: a
./main.go:13:11: make([]int, 0) does not escape
./main.go:17:12: make([]byte, 65537) escapes to heap
note: module requires Go 1.18

可以发现切片类型的逃逸阈值是65536 = 64KB,数组类型的逃逸阈值是1024*1024*10 = 10MB,超过这个数值就会发生逃逸。

1.4 闭包逃逸

package main
func intSeq() func() int {
   i := 0
   return func() int {
      i++
      return i
   }
}
func main() {
    a := intSeq()
    println(a())
    println(a())
    println(a())
    println(a())
    println(a())
    println(a())
}

逃逸分析如下,可以发现闭包中的局部变量i发生了逃逸。

$ go build -gcflags="-m -m -l" ./main.go
# command-line-arguments
./main.go:4:2: intSeq capturing by ref: i (addr=false assign=true width=8)
./main.go:5:9: func literal escapes to heap:
./main.go:5:9:   flow: ~r0 = &{storage for func literal}:
./main.go:5:9:     from func literal (spill) at ./main.go:5:9
./main.go:5:9:     from return func literal (return) at ./main.go:5:2
./main.go:4:2: i escapes to heap:
./main.go:4:2:   flow: {storage for func literal} = &i:
./main.go:4:2:     from i (captured by a closure) at ./main.go:6:3
./main.go:4:2:     from i (reference) at ./main.go:6:3
./main.go:4:2: moved to heap: i
./main.go:5:9: func literal escapes to heap
note: module requires Go 1.18

因为函数也是一个指针类型,所以匿名函数当作返回值时也发生了逃逸,在匿名函数中使用外部变量i,这个变量i会一直存在直到a被销毁,所以i变量逃逸到了堆上。

2. 总结

逃逸到堆上的内存可能会加大GC压力,所以在一些简单的场景下,我们可以避免内存逃逸,使得变量更多地分配在栈上,可以提升程序的性能。比如:

  • 不要盲目地使用指针传参,特别是参数对象很小时,虽然可以减小复制大小,但是可能会造成内存逃逸;
  • 多根据代码具体分析,根据逃逸分析结果做一些优化,提高性能。

以上就是Golang内存管理之内存逃逸分析的详细内容,更多关于Golang内存逃逸的资料请关注脚本之家其它相关文章!

相关文章

  • 在 Golang 中实现 Cache::remember 方法详解

    在 Golang 中实现 Cache::remember 方法详解

    这篇文章主要介绍了在 Golang 中实现 Cache::remember 方法详解,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-03-03
  • 一文初探 Goroutine 与 channel基本用法

    一文初探 Goroutine 与 channel基本用法

    这篇文章主要为大家介绍了一文初探 Goroutine 与 channel基本用法详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-02-02
  • Go语言fmt.Sprintf格式化输出的语法与实例

    Go语言fmt.Sprintf格式化输出的语法与实例

    Go 可以使用 fmt.Sprintf 来格式化字符串,下面这篇文章主要给大家介绍了关于Go语言fmt.Sprintf格式化输出的语法与实例,文中通过实例代码介绍的非常详细,需要的朋友可以参考下
    2022-07-07
  • GPT回答 go语言和C语言数组操作对比

    GPT回答 go语言和C语言数组操作对比

    这篇文章主要为大家介绍了GPT回答的go语言和C语言数组操作方法对比,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-10-10
  • golang sql语句超时控制方案及原理

    golang sql语句超时控制方案及原理

    一般应用程序在执行一条sql语句时,都会给这条sql设置一个超时时间,本文主要介绍了golang sql语句超时控制方案及原理,具有一定的参考价值,感兴趣的可以了解一下
    2023-12-12
  • golang实战之truncate日志文件详解

    golang实战之truncate日志文件详解

    这篇文章主要给大家介绍了关于golang实战之truncate日志文件的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2018-07-07
  • Ubuntu安装Go语言运行环境

    Ubuntu安装Go语言运行环境

    由于最近偏爱Ubuntu,在加上作为一门开源语言,在Linux上从源代码开始搭建环境更让人觉得有趣味性。让我们直接先从Go语言的环境搭建开始
    2015-04-04
  • Go语言字符串拼接方式与性能比较分析

    Go语言字符串拼接方式与性能比较分析

    这篇文章主要为大家介绍了Go语言字符串拼接方式与性能比较示例分析,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-12-12
  • Golang 实现 RTP音视频传输示例详解

    Golang 实现 RTP音视频传输示例详解

    这篇文章主要为大家介绍了Golang实现RTP音视频传输的示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-07-07
  • Golang中常见的三种并发控制方式使用小结

    Golang中常见的三种并发控制方式使用小结

    这篇文章主要为大家详细介绍了如何对goroutine并发行为的控制,在Go中最常见的有三种方式:sync.WaitGroup、channel和Context,下面我们就来看看他们的具体使用吧
    2024-01-01

最新评论