golang RWMutex读写锁实现读共享写独占的功能示例

 更新时间:2023年09月27日 09:22:57   作者:lincoln_hlf1  
在 Go 里除了互斥锁外,还有读写锁 RWMutex,它主要用来实现读共享,写独占的功能,今天我们也顺便分析下读写锁,加深对 Go 锁的理解

引言

在上一篇文章 golang 重要知识:mutex 里我们介绍了互斥锁 mutex 的相关原理实现。而且在 Go 里除了互斥锁外,还有读写锁 RWMutex,它主要用来实现读共享,写独占的功能。今天我们也顺便分析下读写锁,加深对 Go 锁的理解

读写锁的实现原理

所谓的读写锁,其实就是针对下面的两种场景,对 Goroutine 之间的同步互斥进行控制:

  • 多个 goroutine 一起占有读锁,互不影响,可以继续自己后面的逻辑代码。
  • 写锁正在占有着,则后面的 goroutine 无论是要进行读锁占有,还是写锁占有,都将会被阻塞等待,直到当前的写锁释放。

弄清楚上面的场景需求后,实现就简单多了,关键就在于判断当前是否处于写锁状态即可,毕竟需要有阻塞等待的动作。

按照常规思路,我们一般会采用一个标识位来维护这个状态。然而,Go 官方却连这一步都省了。

利用了一个本来就得维护的读锁数量,在进行写锁占有时,使它变为负数。

后面有新进来的读写操作,只需要判断该值是否正负即可,负数则代表当前正在进行写锁占有,需要阻塞等待。

而在写锁占有结束后,该值又会恢复为正数,又可以进行新的读写操作了。

RWMutex 源码分析

接下来,我们到 src/runtime/rwmutex.go里具体分析下 RWMutex 的代码结构。

// rwmutex 是一个读写互斥的锁
// 将允许多个 goroutine 持有读锁,但写锁只会有一个持有
// rwmutex 使用了 sync.RWMutex 来辅助写锁互斥
type rwmutex struct {
rLock      mutex    // 用于保护设置 readers, readerPass, writer
readers    muintptr // 休眠等待的 goroutine 读锁队列,等到写锁占有结束后将对应被唤起。
readerPass uint32   // 读锁队列需要跳过的 goroutine 数量,当在写锁结束后会唤起读锁队列里的 goroutine,但有的可能已不在队列里了,这部分需跳过。
wLock  mutex    // 用于 writer 之间的互斥锁
writer muintptr // 等待读完成的 writer
readerCount uint32 // 正在执行读操作的 goroutine数量
readerWait  uint32 // 等待读锁释放的数量。当写锁占有后,前面还有部分读锁在继续着,需要等它们释放才能继续进行。
}

RWMutex 的 Lock() 分析

func (rw *rwmutex) Lock() {
    // 用于多个写锁之间的的竞争
    lock(&rw.wLock)
    m := getg().m
    // 将读锁数量 readerCount 置为负数,用于判断当前是否处于写锁占有状态,
    // rw.readerCount < 0 则表示当前正在进行写锁占有.
    r := int32(atomic.Xadd(&rw.readerCount, -rwmutexMaxReaders)) + rwmutexMaxReaders
    // 前面还有读锁在进行着,需要等待释放完才能继续
    lock(&rw.rLock)
    if r != 0 && atomic.Xadd(&rw.readerWait, r) != 0 {
        systemstack(func() {
            rw.writer.set(m)
            unlock(&rw.rLock)
            notesleep(&m.park)
            noteclear(&m.park)
        })
    } else {
        unlock(&rw.rLock)
    }
}

RWMutex 的 RLock() 分析

func (rw *rwmutex) Rlock() {
    acquirem()
    if int32(atomic.Xadd(&rw.readerCount, 1)) < 0 {
        // 读锁数量 readerCount + 1 后小于 0,表示当前正被写锁占有,
        // 等待写锁释放
        systemstack(func() {
            lock(&rw.rLock)
            if rw.readerPass > 0 {
                rw.readerPass -= 1
                unlock(&rw.rLock)
            } else {
                // 等待写锁唤起
                m := getg().m
                m.schedlink = rw.readers
                rw.readers.set(m)
                unlock(&rw.rLock)
                notesleep(&m.park)
                noteclear(&m.park)
            }
        })
    }
}

RWMutex 的 Unlock() 分析

func (rw *rwmutex) Unlock() {
    // 将原来被写锁置为负数的 readerCount 重新恢复回来.
    r := int32(atomic.Xadd(&rw.readerCount, rwmutexMaxReaders))
    if r >= rwmutexMaxReaders {
        throw("unlock of unlocked rwmutex")
    }
    // 唤起之前等待的读锁.
    lock(&rw.rLock)
    for rw.readers.ptr() != nil {
        reader := rw.readers.ptr()
        rw.readers = reader.schedlink
        reader.schedlink.set(nil)
        notewakeup(&reader.park)
        r -= 1
    }
    // 如果 r > 0, 说明读锁队列里有的 goroutine 已不在队列里了,这部分需跳过
    rw.readerPass += uint32(r)
    unlock(&rw.rLock)
    // 解除写锁
    unlock(&rw.wLock)
}

RWMutex 的 RUnlock() 分析

func (rw *rwmutex) RUnlock() {
    // 如果释放后,readerCount < 0,表示当前写锁正在占有
    if r := int32(atomic.Xadd(&rw.readerCount, -1)); r < 0 {
        if r+1 == 0 || r+1 == -rwmutexMaxReaders {
            throw("runlock of unlocked rwmutex")
        }
        // readerWait == 0,表示前面的读锁都释放完了,
        // 需要唤起写锁
        if atomic.Xadd(&rw.readerWait, -1) == 0 {
            // The last reader unblocks the writer.
            lock(&rw.rLock)
            w := rw.writer.ptr()
            if w != nil {
                notewakeup(&w.park)
            }
            unlock(&rw.rLock)
        }
    }
    releasem(getg().m)
}

总结

RWMutex 通过 readerCount 的正负来判断当前是处于读锁占有还是写锁占有。

在处于写锁占有状态后,会将此时的 readerCount 赋值给 readerWait,表示要等前面 readerWait 个读锁释放完才算完整的占有写锁,才能进行后面的独占操作。

读锁释放的时候, 会对 readerWait 对应减一,直到为 0 值,就可以唤起写锁了。

并且在写锁占有后,即时有新的读操作加进来, 也不会影响到 readerWait 值了,只会影响总的读锁数目:readerCount。

以上就是golang RWMutex读写锁实现读共享写独占的功能示例的详细内容,更多关于golang RWMutex读写锁的资料请关注脚本之家其它相关文章!

相关文章

  • go打包aar及flutter调用aar流程详解

    go打包aar及flutter调用aar流程详解

    这篇文章主要为大家介绍了go打包aar及flutter调用aar流程详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-03-03
  • 详解Go使用Viper和YAML管理配置文件

    详解Go使用Viper和YAML管理配置文件

    在软件开发中,配置管理是一项基本但至关重要的任务,它涉及到如何有效地管理应用程序的配置变量,本文将探讨如何使用Viper库配合YAML配置文件来实现高效的配置管理,感兴趣的可以了解下
    2024-04-04
  • goland 设置project gopath的操作

    goland 设置project gopath的操作

    这篇文章主要介绍了goland 设置project gopath的操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-05-05
  • Go 1.21新内置函数min、max和clear的用法详解

    Go 1.21新内置函数min、max和clear的用法详解

    Go 1.21 版本已经正式发布,它带来了许多新特性和改进,其中引入了的三个新内置函数:max、min 和 clear,接下来我们就来看看这些函数的用途和特点吧
    2023-08-08
  • Golang中重复错误处理的优化方法

    Golang中重复错误处理的优化方法

    这篇文章主要给大家介绍了关于Golang中重复错误处理优化的相关资料,文中通过示例代码介绍的非常详细,对大家学习或者使用Golang具有一定的参考学习价值,需要的朋友们下面来一起学习学习吧
    2019-04-04
  • Go语言配置数据库连接池的实现

    Go语言配置数据库连接池的实现

    本文内容我们将解释连接池背后是如何工作的,并探索如何配置数据库能改变或优化其性能。文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-12-12
  • 一文搞懂Golang中的内存逃逸

    一文搞懂Golang中的内存逃逸

    内存逃逸是 Go 语言中一个重要的概念,涉及到程序的性能优化和内存管理,了解内存逃逸可以帮助我们编写更高效的代码,本文将从基本概念入手,深入讲解 Go 语言中的内存逃逸现象,以及如何避免,需要的朋友可以参考下
    2023-12-12
  • 浅析Go中序列化与反序列化的基本使用

    浅析Go中序列化与反序列化的基本使用

    序列化是指将对象转换成字节流,从而存储对象或将对象传输到内存、数据库或文件的过程,反向过程称为“反序列化”。本文主要介绍了Go中序列化与反序列化的基本使用,需要的可以参考一下
    2023-04-04
  • golang使用sort接口实现排序示例

    golang使用sort接口实现排序示例

    这篇文章主要介绍了golang使用sort接口实现排序的方法,简单分析了sort接口的功能并实例演示了基于sort接口的排序实现方法,需要的朋友可以参考下
    2016-07-07
  • 解析Golang和Java的优势与劣势

    解析Golang和Java的优势与劣势

    Golang和Java是两种流行的编程语言,它们在很多方面有着相似之处,但也存在一些重要的区别,本文将对Golang和Java进行对比,探讨它们的特点和适用场景,需要的朋友可以参考下
    2023-10-10

最新评论