java实现文件分片上传并且断点续传的示例代码
一、简单的分片上传
针对第一个问题,如果文件过大,上传到一半断开了,若重新开始上传的话,会很消耗时间,并且你也并不知道距离上次断开时,已经上传到哪一部分了。因此我们应该先对大文件进行分片处理,防止上面提到的问题。
前端代码:
<!DOCTYPE html> <html> <head> <title>文件上传示例</title> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> </head> <body> <form> <input type="file" id="fileInput" multiple> <button type="button" onclick="upload()" >上传</button> </form> <script> function upload() { var fileInput = document.getElementById('fileInput'); var fileName = document.getElementById("fileInput").files[0].name; var files = fileInput.files; var chunkSize = 1024 * 10; // 每个块的大小为10KB var totalChunks = Math.ceil(files[0].size / chunkSize); // 文件总块数 var currentChunk = 0; // 当前块数 // 分片上传文件 function uploadChunk() { var xhr = new XMLHttpRequest(); var formData = new FormData(); // 将当前块数和总块数添加到formData中 formData.append('currentChunk', currentChunk); formData.append('totalChunks', totalChunks); formData.append('fileName',fileName); // 计算当前块在文件中的偏移量和长度 var start = currentChunk * chunkSize; var end = Math.min(files[0].size, start + chunkSize); var chunk = files[0].slice(start, end); // 添加当前块到formData中 formData.append('chunk', chunk); // 发送分片到后端 xhr.open('POST', '/file/upload'); xhr.send(formData); xhr.onload = function() { // 更新当前块数 currentChunk++; // 如果还有未上传的块,则继续上传 if (currentChunk < totalChunks) { uploadChunk(); } else { // 所有块都上传完毕,进行文件合并 mergeChunks(fileName); } } } // 合并所有分片 function mergeChunks() { var xhr = new XMLHttpRequest(); xhr.open("POST", "/file/merge", true); xhr.setRequestHeader("Content-type", "application/x-www-form-urlencoded"); xhr.onreadystatechange = function() { if (xhr.readyState === 4) { if (xhr.status === 200) { console.log("文件上传完成:", xhr.responseText); } else { console.error(xhr.responseText); } } }; xhr.send("fileName=" + fileName); } // 开始上传 uploadChunk(); } </script> </body> </html>
ps:以上代码使用了html+js完成,请求是使用了xhr来发送请求。其中xhr.open的地址为自己本地的接口地址。由于平时测试并不需要真正上传大型文件,所以每个分片的大小定义为10KB,以此模拟大文件上传。
后端代码:
@RestController @RequestMapping("/file") public class FileController { @Autowired private ResourceLoader resourceLoader; @Value("${my.config.savePath}") private String uploadPath; private Map<String, List<File>> chunksMap = new ConcurrentHashMap<>(); @PostMapping("/upload") public void upload(@RequestParam int currentChunk, @RequestParam int totalChunks, @RequestParam MultipartFile chunk,@RequestParam String fileName) throws IOException { // 将分片保存到临时文件夹中 String chunkName = chunk.getOriginalFilename() + "." + currentChunk; File chunkFile = new File(uploadPath, chunkName); chunk.transferTo(chunkFile); // 记录分片上传状态 List<File> chunkList = chunksMap.get(fileName); if (chunkList == null) { chunkList = new ArrayList<>(totalChunks); chunksMap.put(fileName, chunkList); } chunkList.add(chunkFile); } @PostMapping("/merge") public String merge(@RequestParam String fileName) throws IOException { // 获取所有分片,并按照分片的顺序将它们合并成一个文件 List<File> chunkList = chunksMap.get(fileName); if (chunkList == null || chunkList.size() == 0) { throw new RuntimeException("分片不存在"); } File outputFile = new File(uploadPath, fileName); try (FileChannel outChannel = new FileOutputStream(outputFile).getChannel()) { for (int i = 0; i < chunkList.size(); i++) { try (FileChannel inChannel = new FileInputStream(chunkList.get(i)).getChannel()) { inChannel.transferTo(0, inChannel.size(), outChannel); } chunkList.get(i).delete(); // 删除分片 } } chunksMap.remove(fileName); // 删除记录 // 获取文件的访问URL Resource resource = resourceLoader.getResource("file:" + uploadPath + fileName); //由于是本地文件,所以开头是"file",如果是服务器,请改成自己服务器前缀 return resource.getURI().toString(); } }
ps: 使用一个map记录上传了哪些分片,这里将分片存在了本地的文件夹,等到分片都上传完成后合并并删除分片。用ConcurrentHashMap代替HashMap是因为它在多线程下是安全的。
以上只是一个简单的文件上传代码,但是只要在这上面另做修改就可以解决上面提到的问题。
二、解决问题
1. 怎么避免大量的硬盘读写
上面代码有一个弊端,就是将分片的内容存在了本地的文件夹里。而且在合并的时候判断上传是否完全也是从文件夹读取文件的。对磁盘的大量读写操作不仅速度慢,还会导致服务器崩溃,因此下面代码使用了redis来存储分片信息,避免对磁盘过多读写。(你也可以使用mysql或者其他中间件来存储信息,由于读写尽量不要在mysql,所以我使用了redis)。
2.目标文件过大,如果在上传过程中断开了怎么办
使用redis来存储分片内容,当断开后,文件信息还是存储在redis中,用户再次上传时,检测redis是否有该分片的内容,如果有则跳过。
3. 前端页面上传的文件数据与原文件数据不一致该如何发现
前端在调用上传接口时,先计算文件的校验和,然后将文件和校验和一并传给后端,后端对文件再计算一次校验和,两个校验和进行对比,如果相等,则说明数据一致,如果不一致则报错,让前端重新上传该片段。
js计算校验和代码:
// 计算文件的 SHA-256 校验和 function calculateHash(fileChunk) { return new Promise((resolve, reject) => { const blob = new Blob([fileChunk]); const reader = new FileReader(); reader.readAsArrayBuffer(blob); reader.onload = () => { const arrayBuffer = reader.result; const crypto = window.crypto || window.msCrypto; const digest = crypto.subtle.digest("SHA-256", arrayBuffer); digest.then(hash => { const hashArray = Array.from(new Uint8Array(hash)); const hashHex = hashArray.map(b => b.toString(16).padStart(2, '0')).join(''); resolve(hashHex); }); }; reader.onerror = () => { reject(new Error('Failed to calculate hash')); }; }); }
public static String calculateHash(byte[] fileChunk) throws Exception { MessageDigest md = MessageDigest.getInstance("SHA-256"); md.update(fileChunk); byte[] hash = md.digest(); ByteBuffer byteBuffer = ByteBuffer.wrap(hash); StringBuilder hexString = new StringBuilder(); while (byteBuffer.hasRemaining()) { hexString.append(String.format("%02x", byteBuffer.get())); } return hexString.toString(); }
注意点:
这里前端和后端计算校验和的算法一定要是一致的,不然得不到相同的结果。
在前端中使用了crypto对文件进行计算,需要引入相关的js。
你可以使用script引入也可以直接下载js
<script src="https://cdn.bootcss.com/crypto-js/3.1.9-1/crypto-js.min.js"></script>
4. 上传过程中如果断开了应该如何判断哪些分片没有上传
对redis检测哪个分片的下标不存在,若不存在则存入list,最后将list返回给前端
boolean allChunksUploaded = true; List<Integer> missingChunkIndexes = new ArrayList<>(); for (int i = 0; i < hashMap.size(); i++) { if (!hashMap.containsKey(String.valueOf(i))) { allChunksUploaded = false; missingChunkIndexes.add(i); } } if (!allChunksUploaded) { return ResponseEntity.status(HttpStatus.BAD_REQUEST).body(missingChunkIndexes); }
三、完整代码
1、引入依赖
<dependency> <groupId>io.lettuce</groupId> <artifactId>lettuce-core</artifactId> <version>6.1.4.RELEASE</version> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-data-redis</artifactId> </dependency>
lettuce是一个Redis客户端,你也可以不引入,直接使用redisTemplat就行了
2、前端代码
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>File Upload Demo</title> </head> <body> <input type="file" id="fileInput" multiple> <button type="button" onclick="uploadFile()" >上传</button> <div id="progressBar"></div> <script src="https://cdn.bootcss.com/crypto-js/3.1.9-1/crypto-js.min.js"></script> <script> var fileId = ""; var fileName = null; var file; const chunkSize = 1024 * 10; // 每个分片的大小10KB async function uploadFile() { var fileInput = document.getElementById('fileInput'); file = fileInput.files[0]; fileName = document.getElementById("fileInput").files[0].name; // 分片上传文件 const chunks = Math.ceil(file.size / chunkSize); for (let i = 0; i < chunks; i++) { try { await uploadChunk(file, i); } catch (error) { console.error('Failed to upload chunk', i, error); // 如果上传失败,则尝试恢复上传 try { await uploadChunk(file, i); } catch (error) { console.error('Failed to resume upload', i, error); return; } } } // 合并文件 try { const fileUrl = await mergeFile(); console.log('File URL:', fileUrl); } catch (error) { console.error('Failed to merge file', error); } } function uploadChunk(file, chunkIndex) { return new Promise((resolve, reject) => { let fileTemp = file.slice(chunkIndex * chunkSize, (chunkIndex + 1) * chunkSize); var myPromise = calculateHash(fileTemp); myPromise.then(result =>{ const formData = new FormData(); formData.append('chunk',fileTemp); formData.append('chunkIndex', chunkIndex); formData.append('chunkChecksum', result); formData.append('chunkSize', chunkSize); formData.append('fileId',fileId); const xhr = new XMLHttpRequest(); xhr.open('POST', '/hospital/file2/upload', true); xhr.onload = () => { if (xhr.status === 200) { resolve(xhr.response); fileId = xhr.responseText } else { reject(xhr.statusText); } }; xhr.onerror = () => { reject(xhr.statusText); }; xhr.send(formData); }) }); } function mergeFile() { return new Promise((resolve, reject) => { const xhr = new XMLHttpRequest(); const formData = new FormData(); formData.append('fileId',fileId); formData.append('fileName',fileName); xhr.open('POST', '/hospital/file2/merge', true); xhr.onload = () => { if (xhr.status === 200) { resolve(xhr.response); } else { reject(xhr.statusText); resume(xhr.response.replace(/\[|]/g,'').split(',')); } }; xhr.onerror = () => { reject(xhr.statusText); }; xhr.send(formData); }); } async function resume(list){ for (let i = 0; i < list.length; i++) { try { await uploadChunk(file, i); } catch (error) { console.error('Failed to upload chunk', i, error); // 如果上传失败,则尝试恢复上传 try { await uploadChunk(file, i); } catch (error) { console.error('Failed to resume upload', i, error); return; } } } // 合并文件 try { const fileUrl = await mergeFile(); console.log('File URL:', fileUrl); } catch (error) { console.error('Failed to merge file', error); } } // 计算文件的 SHA-256 校验和 function calculateHash(fileChunk) { return new Promise((resolve, reject) => { const blob = new Blob([fileChunk]); const reader = new FileReader(); reader.readAsArrayBuffer(blob); reader.onload = () => { const arrayBuffer = reader.result; const crypto = window.crypto || window.msCrypto; const digest = crypto.subtle.digest("SHA-256", arrayBuffer); digest.then(hash => { const hashArray = Array.from(new Uint8Array(hash)); const hashHex = hashArray.map(b => b.toString(16).padStart(2, '0')).join(''); resolve(hashHex); }); }; reader.onerror = () => { reject(new Error('Failed to calculate hash')); }; }); } </script> </body> </html>
3、后端接口代码
@RestController @RequestMapping("/file2") public class File2Controller { private static final String FILE_UPLOAD_PREFIX = "file_upload:"; @Autowired private ResourceLoader resourceLoader; @Value("${my.config.savePath}") private String uploadPath; @Autowired private ThreadLocal<RedisConnection> redisConnectionThreadLocal; // @Autowired // private RedisTemplate redisTemplate; @PostMapping("/upload") public ResponseEntity<?> uploadFile(@RequestParam("chunk") MultipartFile chunk, @RequestParam("chunkIndex") Integer chunkIndex, @RequestParam("chunkSize") Integer chunkSize, @RequestParam("chunkChecksum") String chunkChecksum, @RequestParam("fileId") String fileId) throws Exception { if (StringUtils.isBlank(fileId) || StringUtils.isEmpty(fileId)) { fileId = UUID.randomUUID().toString(); } String key = FILE_UPLOAD_PREFIX + fileId; byte[] chunkBytes = chunk.getBytes(); String actualChecksum = calculateHash(chunkBytes); if (!chunkChecksum.equals(actualChecksum)) { return ResponseEntity.status(HttpStatus.BAD_REQUEST).body("Chunk checksum does not match"); } // if(!redisTemplate.opsForHash().hasKey(key,String.valueOf(chunkIndex))) { // redisTemplate.opsForHash().put(key, String.valueOf(chunkIndex), chunkBytes); // } RedisConnection connection = redisConnectionThreadLocal.get(); Boolean flag = connection.hExists(key.getBytes(), String.valueOf(chunkIndex).getBytes()); if (flag==null || flag == false) { connection.hSet(key.getBytes(), String.valueOf(chunkIndex).getBytes(), chunkBytes); } return ResponseEntity.ok(fileId); } public static String calculateHash(byte[] fileChunk) throws Exception { MessageDigest md = MessageDigest.getInstance("SHA-256"); md.update(fileChunk); byte[] hash = md.digest(); ByteBuffer byteBuffer = ByteBuffer.wrap(hash); StringBuilder hexString = new StringBuilder(); while (byteBuffer.hasRemaining()) { hexString.append(String.format("%02x", byteBuffer.get())); } return hexString.toString(); } @PostMapping("/merge") public ResponseEntity<?> mergeFile(@RequestParam("fileId") String fileId, @RequestParam("fileName") String fileName) throws IOException { String key = FILE_UPLOAD_PREFIX + fileId; RedisConnection connection = redisConnectionThreadLocal.get(); try { Map<byte[], byte[]> chunkMap = connection.hGetAll(key.getBytes()); // Map chunkMap = redisTemplate.opsForHash().entries(key); if (chunkMap.isEmpty()) { return ResponseEntity.status(HttpStatus.NOT_FOUND).body("File not found"); } Map<String,byte[]> hashMap = new HashMap<>(); for(Map.Entry<byte[],byte[]> entry :chunkMap.entrySet()){ hashMap.put((new String(entry.getKey())),entry.getValue()); } // 检测是否所有分片都上传了 boolean allChunksUploaded = true; List<Integer> missingChunkIndexes = new ArrayList<>(); for (int i = 0; i < hashMap.size(); i++) { if (!hashMap.containsKey(String.valueOf(i))) { allChunksUploaded = false; missingChunkIndexes.add(i); } } if (!allChunksUploaded) { return ResponseEntity.status(HttpStatus.BAD_REQUEST).body(missingChunkIndexes); } File outputFile = new File(uploadPath, fileName); boolean flag = mergeChunks(hashMap, outputFile); Resource resource = resourceLoader.getResource("file:" + uploadPath + fileName); if (flag == true) { connection.del(key.getBytes()); // redisTemplate.delete(key); return ResponseEntity.ok().body(resource.getURI().toString()); } else { return ResponseEntity.status(555).build(); } } catch (Exception e) { e.printStackTrace(); return ResponseEntity.status(HttpStatus.INTERNAL_SERVER_ERROR).body(e.getMessage()); } } private boolean mergeChunks(Map<String, byte[]> chunkMap, File destFile) { try (FileOutputStream outputStream = new FileOutputStream(destFile)) { // 将分片按照顺序合并 for (int i = 0; i < chunkMap.size(); i++) { byte[] chunkBytes = chunkMap.get(String.valueOf(i)); outputStream.write(chunkBytes); } return true; } catch (IOException e) { e.printStackTrace(); return false; } } }
4、redis配置
@Configuration public class RedisConfig { @Value("${spring.redis.host}") private String host; @Value("${spring.redis.port}") private int port; @Value("${spring.redis.password}") private String password; @Bean public RedisConnectionFactory redisConnectionFactory() { RedisStandaloneConfiguration config = new RedisStandaloneConfiguration(); config.setHostName(host); config.setPort(port); config.setPassword(RedisPassword.of(password)); return new LettuceConnectionFactory(config); } @Bean public ThreadLocal<RedisConnection> redisConnectionThreadLocal(RedisConnectionFactory redisConnectionFactory) { return ThreadLocal.withInitial(() -> redisConnectionFactory.getConnection()); } }
使用 redisConnectionThreadLocal 是为了避免多次建立连接,很耗时间
总结
以上就是该功能的完整代码。使用代码记得修改uploadPath,避免代码找不到目录路径。在代码最后,可以使用mysql对整个文件计算校验和,将校验和结果和文件名、文件大小、文件类型存入数据库中,在下次大文件上传前先判断是否存在。若存在就不要上传避免占用空间。
到此这篇关于java实现文件分片上传并且断点续传的示例代码的文章就介绍到这了,更多相关java 文件分片上传内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
相关文章
java 中序列化与readResolve()方法的实例详解
这篇文章主要介绍了java 中序列化与readResolve()方法的实例详解的相关资料,这里提供实例帮助大家理解这部分知识,需要的朋友可以参考下2017-08-08
最新评论