JDK1.8使用的垃圾回收器和执行GC的时长以及GC的频率方式
JDK1.8使用的垃圾回收器和执行GC的时长以及GC的频率
GC介绍
GC就是垃圾回收器。因为内存空间是有限的,创建的每个对象和变量都会占据内存,gc做的就是对象清除将内存释放出来。其中堆是虚拟机中进行垃圾回收的主要场所,其次是方法区。
垃圾回收器
新生代收集器:
Serial
:是一类用于新生代的单线程收集器,采用复制算法。ParNew
:是Serial的多线程版本。Parallel Scavenge
:多线程收集器,其注重点在于尽可能的缩短垃圾收集时用户线程的停顿时间。
老年代收集器:
Serial Old
:是Serial收集器的老年代版本,也是单线程收集器,采用标记-整理算法。Parallel Old
:是Parallel收集器的老年代版本,采用标记-整理算法。CMS
:一种以获取最短回收停顿时间为目标的收集器。采用的算法是“标记-清除”。
新生代和老年代收集器:
G1收集器:G1收集器是一款面向服务端应用的垃圾收集器,目前是JDK9的默认垃圾收集器。
Java详细信息
java -XX:+PrintCommandLineFlags -version
cmd展示信息:
C:\Users\xx>java -XX:+PrintCommandLineFlags -version
-XX:InitialHeapSize=266295296 -XX:MaxHeapSize=4260724736 -XX:+PrintCommandLineFlags -XX:+UseCompressedClassPointers -XX:+UseCompressedOops -XX:-UseLargePagesIndividualAllocation -XX:+UseParallelGC
java version "1.8.0_91"
Java(TM) SE Runtime Environment (build 1.8.0_91-b14)
Java HotSpot(TM) 64-Bit Server VM (build 25.91-b14, mixed mode)
JDK1.8默认使用的垃圾回收器是-XX:+UseParallelGC,代表为 “Parallel Scavenge” + “Parallel Old”。
在JVM中垃圾回收器配置实现的搭配组合如下:
默认垃圾回收方式 | 代表垃圾回收器 |
---|---|
UseSerialGC | “Serial” + “Serial Old” |
UseParNewGC | “ParNew” + “Serial Old” |
UseConcMarkSweepGC | “ParNew” + “CMS” |
UseParallelGC | “Parallel Scavenge” + “Parallel Old” |
GC优化条件
若满足一下条件,则GC一般不需要优化。
- Minor GC执行时间不超过50ms;
- Minor GC执行不频繁,大概10秒执行一次;
- Full GC执行时间不到1s;
- Full GC执行频率不算频繁,不低于10分钟1次。
垃圾收集器分类与GC性能指标
概述
垃圾收集器没有在规范中进行过多的规定,可以由不同的厂商、不同版本的JVM来实现。
由于JDK的版本处于高速迭代过程中,因此Java发展至今已经衍生了众多的GC版本。
从不同角度分析垃圾收集器,可以将GC分为不同的类型。
Java不同版本新特性:
- 语法层面:Lambda表达式、switch、自动拆箱装箱、enum
- API层面:Stream API、新的日期时间、Optional、String、集合框架
- 底层优化:JVM优化、GC的变化、元空间、静态域、字符串常量池位置变化
垃圾收集器分类
(一)、按线程数分(垃圾回收线程数),可以分为:串行垃圾回收器和并行垃圾回收器
串行回收指的是在同一时间段内只允许有一个CPU用于执行垃圾回收操作,此时工作线程被暂停(STW),直至垃圾收集工作结束。
- 在诸如单CPU处理器或者较小的应用内存等硬件平台不是特别优越的场合,串行回收器的性能表现可以超过并行回收器和并发回收器。所以,串行回收默认被应用在客户端的Client模式下的JVM中。
- 在并发能力比较强的CPU上,并行回收器产生的停顿时间要短于串行回收器。
和串行回收相反,并行收集可以运用多个CPU同时执行垃圾回收,因此提升了应用的吞吐量,不过并行回收仍然与串行回收一样,采用独占式,使用了“stop-the-world”机制。
(二)、按工作模式,可以分为:并发式垃圾回收器和独占式垃圾回收器。
- 并发式垃圾回收器与应用程序线程交替工作,以尽可能减少应用程序的停顿时间。
- 独占式垃圾回收器(Stop the world)一旦运行,就停止应用程序中的所有用户线程,直到垃圾回收过程完全结束。
(三)、按碎片处理方式分,可以分为:压缩式垃圾回收器和非压缩式垃圾回收器
- 压缩式垃圾回收器会在回收完成后,对存活对象进行压缩整理,消除回收后的碎片。
- 非压缩式的垃圾回收器不进行这步操作。
(四)、按工作的内存区间分,可以分为:年轻代垃圾回收器和老年代垃圾回收器
评估GC的性能指标
- 吞吐量:运行用户代码的时间占总运行时间的比例(总运行时间 = 程序的运行时间 + 内存回收的时间)
- 垃圾收集开销:吞吐量的补数,垃圾收集所用时间与总运行时间的比例。
- 暂停时间:执行垃圾收集时,程序的工作线程被暂停的时间。
- 收集频率:相对于应用程序的执行,收集操作发生的频率。
- 内存占用:Java堆区所占的内存大小。
- 快速:一个对象从诞生到被回收所经历的时间。
吞吐量、暂停时间、内存占用 这三者共同构成一个“不可能三角”。三者总体的表现会随着技术进步而越来越好。一款优秀的收集器通常最多同时满足其中的两项。 这三项里,暂停时间的重要性日益凸显。因为随着硬件发展,内存占用多些越来越能容忍,硬件性能的提升也有助于降低收集器运行时对应用程序的影响,即提高了吞吐量。而内存的扩大,对延迟反而带来负面效果。 简单来说,主要抓住两点:
这三项里,暂停时间的重要性日益凸显。因为随着硬件发展,内存占用多些越来越能容忍,硬件性能的提升也有助于降低收集器运行时对应用程序的影响,即提高了吞吐量。而内存的扩大,对延迟反而带来负面效果。 简单来说,主要抓住两点:
(一)、吞吐量
吞吐量就是CPU用于运行用户代码的时间与CPU总消耗时间的比值,即吞吐量 = 运行用户代码时间 /(运行用户代码时间 + 垃圾收集时间)。
比如:虚拟机总共运行了100分钟,其中垃圾收集花掉1分钟,那吞吐量就是99%。
这种情况下,应用程序能容忍较高的暂停时间,因此,高吞吐量的应用程序有更长的时间基准,快速响应是不必考虑的。
吞吐量优先,意味着在单位时间内,STW的时间最短:0.2+0.2 = 0.4。
(二)、暂停时间
“暂停时间”是指一个时间段内应用程序线程暂停,让GC线程执行的状态。
例如,GC期间100毫秒的暂停时间意味着在这100毫秒期间内没有应用程序线程是活动的。暂停时间优先,意味着尽可能让单次STW的时间最短:0.1+0.1 + 0.1+ 0.1+ 0.1 = 0.5。
(三)、吞吐量vs暂停时间
高吞吐量较好,因为这会让应用程序的最终用户感觉只有应用程序线程在做“生产性”工作。直觉上,吞吐量越高程序运行越快。
低暂停时间(低延迟)较好,因为从最终用户的角度来看不管是GC还是其他原因导致一个应用被挂起始终是不好的。这取决于应用程序的类型,有时候甚至短暂的200毫秒暂停都可能打断终端用户体验。因此,具有低的较大暂停时间是非常重要的,特别是对于一个交互式应用程序。
不幸的是”高吞吐量”和”低暂停时间”是一对相互竞争的目标(矛盾)。
因为如果选择以吞吐量优先,那么必然需要降低内存回收的执行频率,但是这样会导致GC需要更长的暂停时间来执行内存回收。
相反的,如果选择以低延迟优先为原则,那么为了降低每次执行内存回收时的暂停时间,也只能频繁地执行内存回收,但这又引起了年轻代内存的缩减和导致程序吞吐量的下降。
在设计(或使用)GC算法时,我们必须确定我们的目标:一个GC算法只可能针对两个目标之一(即只专注于较大吞吐量或最小暂停时间),或尝试找到一个二者的折衷。
现在标准:在最大吞吐量优先的情况下,降低停顿时间。
7种经典的垃圾收集器
- 串行回收器:Serial、Serial old
- 并行回收器:ParNew、Parallel Scavenge、Parallel old
- 并发回收器:CMS、G1
7款经典收集器与垃圾分代之间的关系如下图:
- 新生代收集器:Serial、ParNew、Paralle1 Scavenge;
- 老年代收集器:Serial old、Parallel old、CMS;
- 整堆收集器:G1;
垃圾收集器的组合关系
两个收集器间有连线,表明它们可以搭配使用:Serial/Serial old、Serial/CMS、ParNew/Serial old、ParNew/CMS、Parallel Scavenge/Serial 0ld、Parallel Scavenge/Parallel 0ld、G1;
其中Serial old作为CMS出现"Concurrent Mode Failure"失败的后备预案。
- (红色虚线)由于维护和兼容性测试的成本,在JDK 8时将Serial+CMS、ParNew+Serial old这两个组合声明为废弃(JEP173),并在JDK9中完全取消了这些组合的支持(JEP214),即:移除。
- (绿色虚线)JDK14中:弃用Paralle1 Scavenge和Serialold GC组合(JEP366)
- (青色虚线)JDK14中:删除CMS垃圾回收器(JEP363)
为什么要有很多收集器,一个不够吗?因为Java的使用场景很多,移动端,服务器等。所以就需要针对不同的场景,提供不同的垃圾收集器,提高垃圾收集的性能。
虽然我们会对各个收集器进行比较,但并非为了挑选一个最好的收集器出来。没有一种放之四海皆准、任何场景下都适用的完美收集器存在,更加没有万能的收集器。所以我们选择的只是对具体应用最合适的收集器。
如何查看默认垃圾收集器?
第一种方式:-XX:+PrintCommandLineFlags:查看命令行相关参数(包含使用的垃圾收集器)
输出结果如下:-XX:+UseParallelGC,可以看到,在JDK1.8中默认使用的Parallel Scavenge/Parallel 0ld这一对垃圾回收器。
-XX:InitialHeapSize=257920192 -XX:MaxHeapSize=4126723072 -XX:+PrintCommandLineFlags -XX:+UseCompressedClassPointers -XX:+UseCompressedOops -XX:-UseLargePagesIndividualAllocation -XX:+UseParallelGC
第二种方式:使用命令行指令:jps查看进程ID + jinfo -flag 相关垃圾回收器参数 进程ID。
总结
以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。
相关文章
Java带复选框的树(Java CheckBox Tree)实现和应用
这篇文章主要为大家详细介绍了Java带复选框的树实现和应用,具有一定的参考价值,感兴趣的小伙伴们可以参考一下2017-11-11SpringBoot使用@Autowired为多实现的接口注入依赖
这篇文章主要介绍了SpringBoot使用@Autowired为多实现的接口注入依赖,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教2021-11-11java安全fastjson1.2.24反序列化TemplatesImpl分析
这篇文章主要介绍了java安全fastjson1.2.24反序列化TemplatesImpl分析,fastjson是alibaba开源的一个用于处理json数据格式的解析库,它支持将java对象解析成json字符串格式的数据,也可以将json字符串还原成java对象2022-07-07
最新评论