如何配置openai的返回Stream数据并转发到h5页面按markdown格式流式输出(最新推荐)

 更新时间:2023年05月29日 16:51:08   作者:学习3人组  
这篇文章主要介绍了如何配置openai的返回Stream数据并转发到h5页面按markdown格式流式输出,本文通过示例代码演示如何使用OpenAI API来实现流式输出并分段加载,需要的朋友可以参考下

如何配置openai返回数据,保持流式输出,可以分段加载

可以使用OpenAI API的stream参数来实现流式输出,并且可以使用max_tokens参数控制每次返回数据的长度。 以下是一个示例代码,演示如何使用OpenAI API来实现流式输出并分段加载:

import openai
# 连接 OpenAI API openai.api_key = "YOUR_API_KEY" 
# 设置 OpenAI API 参数 
model_engine = "davinci" 
# 模型引擎 
prompt = "你好,我需要帮助进行自然语言处理任务。" # 请求语句 
temperature = 0.5 # 温度参数 
max_tokens = 100 # 每次最大输出长度 # 获取 OpenAI 返回数据 
completions = openai.Completion.create( engine=model_engine, prompt=prompt, temperature=temperature, max_tokens=max_tokens, n=1, stream=True ) # 分段获取数据 
for i, text in enumerate(iter(completions.choices), start=1): 
print(f"============== 第 {i} 段输出 ==============") 
print(text.text)

在这个示例中,我们将stream参数设置为True,这样OpenAI API将会实时地将数据传输回调用方,并且将返回一个生成器对象(iter(completions.choices)),使得我们可以逐段获取数据并打印出来。 同时,我们使用max_tokens参数来控制每次返回的数据长度,这样也可以有效的避免返回数据过长导致内存不足的问题。 注意,这里的YOUR_API_KEY需要替换为您在OpenAI申请的API密钥。【请求时间:14秒】

openai 返回stream流,是UDP还是TCP,接收stream数据代码DEMO

OpenAI GPT-3 API 返回的是 HTTPS 流,使用的是 TCP 协议。
如果您需要处理从 OpenAI GPT-3 API 返回的数据流,您可以使用 Python 中的 requests 库来处理它。
以下是一个可以接收并处理由 OpenAI GPT-3 API 返回的数据流的示例代码:

import requests 
def process_stream(stream): 
for line in stream.iter_lines(): 
	if line: # 处理返回的数据 
		print(line.decode('utf-8')) # 发起 API 请求并处理返回的数据流 
		response = requests.post(url, headers=headers, data=data, stream=True) 
		process_stream(response.iter_lines()) 

在上面的代码中,我们使用 requests.post 方法发起了一个带有 stream=True 参数的 POST 请求,并将响应保存到 response 变量中。接着,我们调用 process_stream 函数来处理从 API 返回的数据流。在 process_stream 函数中,我们使用 iter_lines 迭代器来逐行处理数据流,并将每行转换为 UTF-8 编码字符串。在这个简单的示例中,我们只是将数据打印到控制台上,但您可以根据实际需求来编写相应的逻辑来处理数据。

接收stream数据的PHP代码示例如下:

<?php $ch = curl_init(); 
curl_setopt($ch, CURLOPT_URL, 'STREAM_URL'); 
curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
curl_setopt($ch, CURLOPT_WRITEFUNCTION, function($curl, $data) 
{ // 处理获得的数据
 echo $data; 
 return strlen($data); }); 
 curl_exec($ch);
  curl_close($ch); ?> 

其中,STREAM_URL 代表 OpenAI 的 stream URL 地址。这段代码会将数据逐步地写到屏幕上。
相应的,接收stream数据的Java代码示例如下:

import java.net.*; 
import java.io.*; 
public class StreamReceiver { 
	public static void main(String[] args) throws Exception 
		{ URL streamURL = new URL("STREAM_URL"); 
		try (
			BufferedReader reader = new BufferedReader( new InputStreamReader(streamURL.openStream()))) 
				{ String line; 
					while ((line = reader.readLine()) != null) 
					{ // 处理获得的数据 System.out.println(line); 
					}
				} 
		 } 
 } 

同样的,STREAM_URL 代表 OpenAI 的 stream URL 地址。这段代码会将数据逐步地输出到命令行界面上

PHP代码示例:

<?php // 请求OpenAI接口获取stream数据,并转发到H5页面端 
$openAIUrl = 'https://api.openai.com/v1/engines/davinci-codex/completions'; $headers = array( 'Content-Type: application/json', 'Authorization: Bearer <YOUR_API_KEY>' ); 
$data = array( 'prompt' => 'Hello, world!', 'max_tokens' => 5, 'temperature' => 0.7 ); 
$ch = curl_init(); 
curl_setopt($ch, CURLOPT_URL, $openAIUrl); 
curl_setopt($ch, CURLOPT_POST, true); 
curl_setopt($ch, CURLOPT_POSTFIELDS, json_encode($data)); 
curl_setopt($ch, CURLOPT_RETURNTRANSFER, true); 
curl_setopt($ch, CURLOPT_HTTPHEADER, $headers); 
curl_setopt($ch, CURLOPT_FOLLOWLOCATION, true);
$output = fopen('php://output', 'w'); 
curl_setopt($ch, CURLOPT_WRITEFUNCTION, function ($ch, $chunk) use ($output) { fwrite($output, $chunk); 
return strlen($chunk); }); 
curl_exec($ch); 
fclose($output); // 将stream数据转发给H5页面端 
header('Content-Type: text/event-stream'); 
header('Cache-Control: no-cache'); 
header('Connection: keep-alive'); 
header('Access-Control-Allow-Origin: *'); 
fpassthru($output); 

Java代码示例:

import java.io.IOException; 
import java.io.InputStream; 
import java.io.OutputStream; 
import java.net.HttpURLConnection; 
import java.net.URL; 
import java.util.concurrent.ExecutorService; 
import java.util.concurrent.Executors; 
import javax.servlet.AsyncContext; 
import javax.servlet.ServletException; 
import javax.servlet.annotation.WebServlet; 
import javax.servlet.http.HttpServlet; 
import javax.servlet.http.HttpServletRequest; 
import javax.servlet.http.HttpServletResponse; 
@WebServlet(asyncSupported = true, urlPatterns = {"/stream"}) 
public class StreamServlet extends HttpServlet 
{ 
private static final ExecutorService executor = Executors.newCachedThreadPool(); 
@Override 
protected void doGet(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException { 
// 创建异步上下文 
AsyncContext asyncContext = request.startAsync(); // 提交任务到线程池
 executor.submit(() -> { try { 
// 请求OpenAI接口获取stream数据 
URL url = new URL("https://api.openai.com/v1/engines/davinci-codex/completions"); 
HttpURLConnection conn = (HttpURLConnection) url.openConnection(); 
conn.setRequestMethod("POST"); 
conn.setRequestProperty("Content-Type", "application/json"); 
conn.setRequestProperty("Authorization", "Bearer <YOUR_API_KEY>"); conn.setDoOutput(true); 
OutputStream out = conn.getOutputStream(); 
out.write("{\"prompt\": \"Hello, world!\", \"max_tokens\": 5, \"temperature\": 0.7}".getBytes());
 out.flush(); 
out.close(); 
InputStream in = conn.getInputStream(); 
response.setContentType("text/event-stream"); 
response.setHeader("Cache-Control", "no-cache"); 
response.setHeader("Connection", "keep-alive"); 
response.setHeader("Access-Control-Allow-Origin", "*"); 
byte[] buffer = new byte[1024];
int count;
while ((count = in.read(buffer)) != -1) { 
// 将stream数据转发给H5页面端 
OutputStream outputStream = asyncContext.getResponse().getOutputStream(); 
String data = new String(buffer, 0, count); 
outputStream.write(("data: " + data + "\n\n").getBytes()); 
outputStream.flush(); } in.close(); } 
catch (IOException e) { e.printStackTrace(); } 
finally { asyncContext.complete(); } }); } } 

Python代码示例:

import requests from flask 
import Flask, Response app = Flask(__name__) @app.route('/stream') 
def stream(): # 请求OpenAI接口获取stream数据 
url = 'https://api.openai.com/v1/engines/davinci-codex/completions' 
headers = { 'Content-Type': 'application/json', 'Authorization': 'Bearer <YOUR_API_KEY>' } 
data = { 'prompt': 'Hello, world!', 'max_tokens': 5, 'temperature': 0.7 } res = requests.post(url, headers=headers, json=data, stream=True) 
# 将stream数据转发给H5页面端 
def generate(): 
for chunk in res.iter_content(chunk_size=1024): 
if chunk: yield 'data: ' + chunk.decode() + '\n\n' 
return Response(generate(), mimetype='text/event-stream', headers={ 'Cache-Control': 'no-cache', 'Connection': 'keep-alive', 'Access-Control-Allow-Origin': '*' }) 
if __name__ == '__main__': 
app.run() 

注意:以上代码仅供参考,具体实现需要根据自己的业务需求进行适当修改。

如何让前端Html能显示mardown格式

要在前端HTML中显示Markdown格式,您可以使用一个叫做Markdown解析器的库或工具。下面是一个简单的例子:
1.首先,通过CDN或将其下载到本地文件夹中,引入一个Markdown解析器库,比如marked.js。

  <script src="https://cdn.jsdelivr.net/npm/marked/marked.min.js"></script> 

在页面上添加一个textarea标签用于输入Markdown格式的文本,添加一个div标签用于显示解析后的HTML内容。

<textarea id="mdInput"></textarea> <div id="htmlOutput"></div> 

在JavaScript中获取textarea的值,将其传递给Markdown解析器,并将输出的HTML代码插入到div中。

var markdown = document.getElementById('mdInput').value; 
var html = marked(markdown); 
document.getElementById('htmlOutput').innerHTML = html; 

这样就可以在浏览器中显示Markdown格式的文本了。

类似于ChatGPT网站使用Node.js中的流(Stream)处理技术将输出转换成markdown格式。
流是一种在处理大量数据时很有用的技术,它允许以逐块的方式处理数据而不必等待加载整个数据集。 在ChatGPT网站中,可能使用了类似于以下代码的方法来将输出流转换为markdown格式:

const markdown = require('markdown').markdown; 
 const stream = require('stream'); 
 const outputStream = new stream.Writable({ 
 	write(chunk, encoding, callback) { 
		 const text = chunk.toString(); 
		 const markdownText = markdown.toHTML(text); 
		 process.stdout.write(markdownText); 
		 callback(); }, 
		 }); 
 // Stream output to markdown formatter 
 originalOutputStream.pipe(outputStream); 

在这个代码示例中,markdown库用于将输入的纯文本转换为Markdown格式。一个Writable可写流用于接收输出,并将其转换为Markdown格式并将其发送到标准输出流(process.stdout.write())。最后将原始输出流(originalOutputStream)连接到新的可写流(outputStream),并通过该管道输出到标准输出流。 这只是一个简单的示例,实际上,ChatGPT网站可能使用更复杂的技术来流式处理并转换输出到Markdown格式

到此这篇关于如何配置openai的返回Stream数据并转发到h5页面按markdown格式流式输出的文章就介绍到这了,更多相关openai返回Stream数据内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Git配置用户签名方式的拓展示例实现全面讲解

    Git配置用户签名方式的拓展示例实现全面讲解

    这篇文章主要为大家介绍了Git配置用户签名方式的拓展示例实现全面讲解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-04-04
  • Git Submodule管理项目子模块的使用

    Git Submodule管理项目子模块的使用

    这篇文章主要介绍了Git Submodule管理项目子模块的使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-08-08
  • Runnable.com 在线测试代码片分享网站

    Runnable.com 在线测试代码片分享网站

    Runnable是一个一站式的代码片段集合网站,你不仅可以搜索代码,还可以编辑、运行这些代码片段,以确保它们的正确性与可用性
    2013-12-12
  • HTTP协议详细介绍

    HTTP协议详细介绍

    HTTP是访问互联网使用的核心通信协议,也是所有web应用程序使用的通信协议。本文详细介绍了HTTP协议,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2022-06-06
  • 在C#和Java语言中for和foreach的区别详解

    在C#和Java语言中for和foreach的区别详解

    这篇文章主要介绍了在C#和Java语言中for和foreach的区别详解,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-09-09
  • 详情解析TCP与UDP传输协议

    详情解析TCP与UDP传输协议

    本文通过讲解TCP与UDP传输协议传输数据是的过程及详细介绍什么是 socket及现在我么们和大家一起来学习吧
    2021-08-08
  • 基数排序算法的原理与实现详解(Java/Go/Python/JS/C)

    基数排序算法的原理与实现详解(Java/Go/Python/JS/C)

    基数排序(RadixSort)是一种非比较型整数排序算法,其原理是将整数按位数切割成不同的数字,然后按每个位数分别比较。本文将利用Java/Go/Python/JS/C不同语言实现基数排序算法,感兴趣的可以了解一下
    2023-03-03
  • 高性能高可用高并发架构和系统设计思路大纲

    高性能高可用高并发架构和系统设计思路大纲

    高性能架构和系统设计要求高并发高性能,高性能更多的是先从编码角度、架构使用角度去让我们的单机(单实例)有更好的性能,然后再从整个系统层面来拥有更好的性能;高并发则直接是全局角度来让我们的系统在全链路下都能够抗住更多的并发请求
    2023-08-08
  • 十六进制、十进制、八进制、二进制常用进制转换

    十六进制、十进制、八进制、二进制常用进制转换

    进制就是进制位,常用的进制包括:二进制、八进制、十进制与十六进制,区别在于数运算时是逢几进一位。比如二进制是逢2进一位,十进制也就是我们常用的0-9是逢10进一位。这篇文章主要介绍了十六进制、十进制、八进制、二进制常用进制转换,需要的朋友可以参考下
    2022-12-12
  • 深入解析HetuEngine实现On Yarn原理

    深入解析HetuEngine实现On Yarn原理

    这篇文章主要介绍了HetuEngine实现On Yarn原理,介绍了HetuEngine On Yarn的原理,其实现主要是借助了Yarn Service提供的能力,感兴趣的朋友一起通过本文学习下
    2022-01-01

最新评论