Java练习题之实现平方根(sqrt)函数

 更新时间:2023年07月14日 10:45:31   作者:tq02  
这篇文章主要介绍了Java练习题之实现平方根(sqrt)函数的相关资料,平方根是一个数学概念,表示一个数的正平方根,文中通过代码和图文介绍的非常详细,需要的朋友可以参考下

前言

可使用java.lang.Math类的sqrt(double)方法求平方根。Math是java.lang包中的类,而Double为对象中的基本类型。但是如果不使用库函数呢?有什么办法实现平方根函数呢?

方法:二分查找牛顿迭代法、利用平方数的性质

利用平方数的性质

平方数的性质:n²=1+1+2+2+....+n-1+n-1+n。例如4²=1+1+2+2+3+3+4=16。

1+3为2的平方,1+3+5为3的平方,

也就是说每一次加一个奇数,再设置一个变量记录加了多少个奇数。 

复杂度分析:

时间复杂度:O(N),每次+2的循环,为(1/2)N的时间复杂度,去掉系数,为O(N)

空间复杂度: O(1),只使用了有限常数个变量;

int sqrt(int x) {
     if(x<=0) return 0;  //小于等于0 返回0
     int ans = 1; 
     int num = 1;
     int  i = 3;
     while(num+i<=x){
         num+=i;  
          ans ++; // 每加一个奇数,ans+1
          i += 2;
        }
        return ans;
    }

二分查找

如果求解一个数的平方根,这个结果肯定是在1到这个数的范围,因此我们可以使用二分查找的方法。例如求解x的平方根,思路:

  1. 初始范围:1 ~ x,使用left标记1,right标记x ,取left~right的中间值,为 middle;
  2. 当middle*middle <= x && (middle+1)*(middle+1) > x时,返回结果
  3. 当 middle*middle < x时,到右半部分继续寻找,范围改成 middle+1 ~ right
  4. 当middle*middle > x时,到左半部分继续寻找,范围改成 left ~ middle+1

注: 这种方法只能使用于整数的开跟

复杂度分析:

时间复杂度:O(logn),二分查找的复杂度,每次循环减少一半

空间复杂度;O(1),只使用了有限常数个变量;

代码实现: 

public int mySqrt(int x) {
    if (x <= 0) {
        return 0;
    }
    int left = 1, right = x;
    while (true) {
        int middle = (left + right) >> 1;
        if (middle <= x / middle && (middle+1) > x / (middle+1)) {
            return (int) middle;
        } else if (middle < x / middle) {
            left = middle + 1;
        } else {
            right = middle - 1;
        }
    }
}

牛顿迭代法

牛顿迭代法简介

         假设方程 F(x)=0  在 x 附近有一个根,那么用以下迭代式子:

 依次计算X1、X2、X3、...........那么序列将无限逼近方程的根。

  牛顿迭代法的原理很简单,其实是根据f(x)在x0附近的值和斜率,估计f(x)和x轴的交点,看下面的动态图:

代码示例:

public class Solution {
	public int sqrt (int x) {//牛顿迭代法
        if(x==0||x==1) return x;//题中告诉我们x的范围: 0 <= x < 2^31-1
		long X0 = x;//使用int进行加法运算可能溢出,所以采用long型
		long X1 = 0;//下一个迭代变量,为了方便理解,也可只使用X0
		while(X0 > x/X0 ) {    // X0^2>x循环
			X1=(X0+x/X0) >> 1;//由迭代公式得,采用右移1位操作代替除以2,运算更快
			X0=X1;//把下一个迭代变量赋给X0,统一操作,方便继续处理
		}
		return (int)X0;//返回值类型为int,因此需要做强制类型转换
    }
}

总结

牛顿迭代法不像二分查找法、平方数,需要唤醒一下各位哥哥姐姐们的高中数学知识,只有这样才能理解该公式。如果唤醒失败,推荐使用二分查找法,不要逞强哦。

到此这篇关于Java练习题之实现平方根(sqrt)函数的文章就介绍到这了,更多相关Java平方根sqrt函数内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 浅析 ArrayList 和 LinkedList 有什么区别

    浅析 ArrayList 和 LinkedList 有什么区别

    ArrayList 和 LinkedList 有什么区别,是面试官非常喜欢问的一个问题。今天通过本文给大家详细介绍下,感兴趣的朋友跟随小编一起看看吧
    2020-10-10
  • spring boot整合kafka过程解析

    spring boot整合kafka过程解析

    这篇文章主要介绍了spring boot整合kafka过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-02-02
  • jdk7 中HashMap的知识点总结

    jdk7 中HashMap的知识点总结

    HashMap的原理是老生常谈了,不作仔细解说。一句话概括为HashMap是一个散列表,它存储的内容是键值对(key-value)映射。这篇文章主要总结了关于jdk7 中HashMap的知识点,需要的朋友可以参考借鉴,一起来看看吧。
    2017-01-01
  • 基于Redis分布式锁Redisson及SpringBoot集成Redisson

    基于Redis分布式锁Redisson及SpringBoot集成Redisson

    这篇文章主要介绍了基于Redis分布式锁Redisson及SpringBoot集成Redisson,文章围绕主题展开详细的内容介绍,具有一定的参考价值,需要的小小伙伴可以参考一下
    2022-09-09
  • springcloud整合到项目中无法启动报错Failed to start bean 'eurekaAutoServiceRegistration'

    springcloud整合到项目中无法启动报错Failed to start bean&n

    这篇文章主要介绍了springcloud整合到项目中无法启动报错Failed to start bean 'eurekaAutoServiceRegistration'问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2024-01-01
  • java使用httpclient 发送请求的示例

    java使用httpclient 发送请求的示例

    HttpClient 是Apache Jakarta Common 下的子项目,可以用来提供高效的、最新的、功能丰富的支持 HTTP 协议的客户端编程工具包,并且它支持 HTTP 协议最新的版本和建议,这篇文章主要介绍了java使用httpclient 发送请求的示例,需要的朋友可以参考下
    2023-10-10
  • java中构造器内部调用构造器实例详解

    java中构造器内部调用构造器实例详解

    在本篇文章里小编给大家分享的是关于java中构造器内部调用构造器实例内容,需要的朋友们可以学习下。
    2020-05-05
  • idea如何配置javafxsdk详细教程

    idea如何配置javafxsdk详细教程

    这篇文章主要介绍了idea如何配置javafxsdk,本文通过图文并茂的形式给大家介绍的非常详细,对大家的学习火锅工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-11-11
  • 使用IntelliJ IDEA2020.2.2 x64 新建java项目并且输出Hello World

    使用IntelliJ IDEA2020.2.2 x64 新建java项目并且输出Hello World

    这篇文章主要介绍了使用IntelliJ IDEA2020.2.2 x64 新建java项目并且输出Hello World,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-11-11
  • AspectJ的基本用法

    AspectJ的基本用法

    本文主要介绍了AspectJ的基本用法。具有很好的参考价值。下面跟着小编一起来看下吧
    2017-04-04

最新评论