Java中的Kafka消费者详解

 更新时间:2023年09月09日 14:23:13   作者:这是一条海鱼  
这篇文章主要介绍了Java中的Kafka消费者详解,Kafka是一个分布式流行消息系统,通常用于大规模数据处理和实时数据流应用程序,它具有高吞吐量、可扩展性和容错性的特点,需要的朋友可以参考下

一、消费者工作流程

1.1 总体工作流程

在这里插入图片描述

1.2 消费者组初始化流程

在这里插入图片描述

1.3 消费者组详细消费流程

在这里插入图片描述

二、消费者消费消息方式

pull(拉)模 式:consumer采用从broker中主动拉取数据。Kafka采用这种方式。

push(推)模式:Kafka没有采用这种方式,因为由broker决定消息发送速率,很难适应所有消费者的 消费速率。

例如推送的速度是50m/s,Consumer1、Consumer2就来不及处理消息。

pull模式不足之处是,如 果Kafka没有数据,消费者可能会陷入循环中,一直返回空数据

2.1 消费者组

Consumer Group(CG):消费者组,由多个consumer组成。形成一个消费者组的条件,是所有消费者的groupid相同。

消费者组内每个消费者负责消费不同分区的数据,一个分区只能由一个组内消费者消费。 消费者组之间互不影响。所有的消费者都属于某个消费者组,即消费者组是逻辑上的一个订阅者。

在这里插入图片描述

如果向消费组中添加更多的消费者,超过主题分区数量,则有一部分消费者就会闲置,不会接收任何消息。

消费者组之间互不影响。所有的消费者都属于某个消费者 组,即消费者组是逻辑上的一个订阅者。

2.2 消费一个主题

// 0 配置
Properties properties = new Properties();
// 连接 bootstrap.servers
properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop102:9092,hadoop103:9092");
// 反序列化
properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
// 配置消费者组id
properties.put(ConsumerConfig.GROUP_ID_CONFIG,"test5");
// 1 创建一个消费者  "", "hello"
KafkaConsumer<String, String> kafkaConsumer = new KafkaConsumer<>(properties);
// 2 订阅主题 first
ArrayList<String> topics = new ArrayList<>();
topics.add("first");
kafkaConsumer.subscribe(topics);
// 3 消费数据
while (true){
    //1秒消费一次
    ConsumerRecords<String, String> consumerRecords = kafkaConsumer.poll(Duration.ofSeconds(1));
    for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {
        System.out.println(consumerRecord);
    }
}

2.3 消费一个分区

需求:创建一个独立消费者,消费 first 主题 0 号分区的数据。

在这里插入图片描述

// 0 配置
Properties properties = new Properties();
// 连接
properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop102:9092,hadoop103:9092");
// 反序列化
properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
// 组id
properties.put(ConsumerConfig.GROUP_ID_CONFIG,"test");
// 1 创建一个消费者
KafkaConsumer<String, String> kafkaConsumer = new KafkaConsumer<>(properties);
// 2 订阅主题对应的分区
ArrayList<TopicPartition> topicPartitions = new ArrayList<>();
topicPartitions.add(new TopicPartition("first",0));
kafkaConsumer.assign(topicPartitions);
// 3 消费数据
while (true){
    ConsumerRecords<String, String> consumerRecords = kafkaConsumer.poll(Duration.ofSeconds(1));
    for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {
        System.out.println(consumerRecord);
    }
}

三、分区的分配以及再平衡

1、一个consumer group中有多个consumer组成,一个 topic有多个partition组成,现在的问题是,到底由哪个consumer来消费哪个 partition的数据。

2、Kafka有四种主流的分区分配策略: Range、RoundRobin、Sticky、CooperativeSticky。 可以通过配置参数partition.assignment.strategy,修改分区的分配策略。Kafka可以同时使用多个分区分配策略。

在这里插入图片描述

参数名称描述
heartbeat.interval.msKafka 消费者和 coordinator 之间的心跳时间,默认 3s。该条目的值必须小于 session.timeout.ms,也不应该高于session.timeout.ms 的 1/3。
session.timeout.msKafka 消费者和 coordinator 之间连接超时时间,默认 45s。超过该值,该消费者被移除,消费者组执行再平衡。
max.poll.interval.ms消费者处理消息的最大时长,默认是 5 分钟。超过该值,该消费者被移除,消费者组执行再平衡。
partition.assignment.strategy消 费 者 分 区 分 配 策 略 , 默 认 策 略 是 Range + CooperativeSticky。Kafka 可以同时使用多个分区分配策略。可 以 选 择 的 策 略 包 括 : Range 、 RoundRobin 、 Sticky 、CooperativeSticky

3.1 分区分配策略之Range

  • 默认策略是Range + CooperativeSticky。

在这里插入图片描述

  • 再平衡案例

(1)停止掉 0 号消费者,快速重新发送消息观看结果(45s 以内,越快越好)。 1 号消费者:消费到 3、4 号分区数据。 2 号消费者:消费到 5、6 号分区数据。 0 号消费者的任务会整体被分配到 1 号消费者或者 2 号消费者。 说明:0 号消费者挂掉后,消费者组需要按照超时时间 45s 来判断它是否退出,所以需要等待,时间到了 45s 后,判断它真的退出就会把任务分配给其他 broker 执行。

(2)再次重新发送消息观看结果(45s 以后)。 1 号消费者:消费到 0、1、2、3 号分区数据。 2 号消费者:消费到 4、5、6 号分区数据。说明:消费者 0 已经被踢出消费者组,所以重新按照 range 方式分配。

3.2 分区分配策略之RoundRobin

properties.put(ConsumerConfig.PARTITION_ASSIGNMENT_STRATEGY_CONFIG,"org.apache.kafka.clients.consumer.RoundRobinAssignor");

在这里插入图片描述

  • 再平衡案例

(1)停止掉 0 号消费者,快速重新发送消息观看结果(45s 以内,越快越好)。 1 号消费者:消费到 2、5 号分区数据 2 号消费者:消费到 4、1 号分区数据0 号消费者的任务会按照 RoundRobin 的方式,把数据轮询分成 0 、6 和 3 号分区数据, 分别由 1 号消费者或者 2 号消费者消费。说明:0 号消费者挂掉后,消费者组需要按照超时时间 45s 来判断它是否退出,所以需 要等待,时间到了 45s 后,判断它真的退出就会把任务分配给其他 broker 执行。

(2)再次重新发送消息观看结果(45s 以后)。 1 号消费者:消费到 0、2、4、6 号分区数据2 号消费者:消费到 1、3、5 号分区数据说明:消费者 0 已经被踢出消费者组,所以重新按照 RoundRobin 方式分配

3.3 Sticky 以及再平衡

粘性分区定义:可以理解为分配的结果带有“粘性的”。即在执行一次新的分配之前,考虑上一次分配的结果,尽量少的调整分配的变动,可以节省大量的开销。

粘性分区是 Kafka 从 0.11.x 版本开始引入这种分配策略,首先会尽量均衡的放置分区到消费者上面,在出现同一消费者组内消费者出现问题的时候,会尽量保持原有分配的分区不变化

再平衡案例

(1)停止掉 0 号消费者,快速重新发送消息观看结果(45s 以内,越快越好)。 1 号消费者:消费到 2、5、3 号分区数据。 2 号消费者:消费到 4、6 号分区数据。 0 号消费者的任务会按照粘性规则,尽可能均衡的随机分成 0 和 1 号分区数据,分别由 1 号消费者或者 2 号消费者消费。说明:0 号消费者挂掉后,消费者组需要按照超时时间 45s 来判断它是否退出,所以需要等待,时间到了 45s 后,判断它真的退出就会把任务分配给其他 broker 执行。

(2)再次重新发送消息观看结果(45s 以后)。 1 号消费者:消费到 2、3、5 号分区数据。 2 号消费者:消费到 0、1、4、6 号分区数据。说明:消费者 0 已经被踢出消费者组,所以重新按照粘性方式分配。

四、offset 位移

在这里插入图片描述

__consumer_offsets 主题里面采用 key 和 value 的方式存储数据。key 是 group.id+topic+分区号,value 就是当前 offset 的值。

每隔一段时间,kafka 内部会对这个 topic 进行compact,也就是每个 group.id+topic+分区号就保留最新数据。

4.1 自动提交 offset

为了使我们能够专注于自己的业务逻辑,Kafka提供了自动提交offset的功能。5s

参数名称描述
enable.auto.commit默认值为 true,消费者会自动周期性地向服务器提交偏移量。
auto.commit.interval.ms自动提交offset的时间间隔,默认是5s,如果设置了 enable.auto.commit 的值为 true, 则该值定义了消费者偏移量向 Kafka 提交的频率,默认 5s。

在这里插入图片描述

// 自动提交
properties.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG,true);
// 提交时间间隔
properties.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG,1000);

4.2 手动提交offset

虽然自动提交offset十分简单便利,但由于其是基于时间提交的,开发人员难以把握offset提交的时机。因 此Kafka还提供了手动提交offset的API。

手动提交offset的方法有两种:分别是commitSync(同步提交)和commitAsync(异步提交)。两者的相同点是,都会将本次提交的一批数据最高的偏移量提交;不同点是,同步提交阻塞当前线程,一直到提交成功,并且会自动失败重试(由不可控因素导致,也会出现提交失败);而异步提交则没有失败重试机制,故有可能提交失败。

commitSync(同步提交):必须等待offset提交完毕,再去消费下一批数据。 commitAsync(异步提交) :发送完提交offset请求后,就开始消费下一批数据了。

在这里插入图片描述

  • 同步提交 offset

由于同步提交 offset 有失败重试机制,故更加可靠,但是由于一直等待提交结果,提交的效率比较低。以下为同步提交 offset 的示例。

// 0 配置
Properties properties = new Properties();
// 连接 bootstrap.servers
properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop102:9092,hadoop103:9092");
// 反序列化
properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
// 配置消费者组id
properties.put(ConsumerConfig.GROUP_ID_CONFIG,"test");
// 手动提交
properties.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG,false);
// 1 创建一个消费者  "", "hello"
KafkaConsumer<String, String> kafkaConsumer = new KafkaConsumer<>(properties);
// 2 订阅主题 first
ArrayList<String> topics = new ArrayList<>();
topics.add("first");
kafkaConsumer.subscribe(topics);
// 3 消费数据
while (true){
    ConsumerRecords<String, String> consumerRecords = kafkaConsumer.poll(Duration.ofSeconds(1));
    for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {
        System.out.println(consumerRecord);
    }
    // 同步提交 offset
    kafkaConsumer.commitSync();
}
  • 异步提交 offset

虽然同步提交 offset 更可靠一些,但是由于其会阻塞当前线程,直到提交成功。因此吞吐量会受到很大的影响。因此更多的情况下,会选用异步提交 offset 的方式。

// 0 配置
Properties properties = new Properties();
// 连接 bootstrap.servers
properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop102:9092,hadoop103:9092");
// 反序列化
properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
// 配置消费者组id
properties.put(ConsumerConfig.GROUP_ID_CONFIG,"test");
// 手动提交
properties.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG,false);
// 1 创建一个消费者  "", "hello"
KafkaConsumer<String, String> kafkaConsumer = new KafkaConsumer<>(properties);
// 2 订阅主题 first
ArrayList<String> topics = new ArrayList<>();
topics.add("first");
kafkaConsumer.subscribe(topics);
// 3 消费数据
while (true){
    ConsumerRecords<String, String> consumerRecords = kafkaConsumer.poll(Duration.ofSeconds(1));
    for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {
        System.out.println(consumerRecord);
    }
    // 同步提交 offset
    kafkaConsumer.commitAsync();
}

4.3 指定 Offset 消费

auto.offset.reset = earliest | latest | none 默认是 latest。 当 Kafka 中没有初始偏移量(消费者组第一次消费)或服务器上不再存在当前偏移量时(例如该数据已被删除),该怎么办?

(1)earliest:自动将偏移量重置为最早的偏移量,–from-beginning。

(2)latest(默认值):自动将偏移量重置为最新偏移量。

(3)none:如果未找到消费者组的先前偏移量,则向消费者抛出异常。

在这里插入图片描述

// 0 配置信息
Properties properties = new Properties();
// 连接
properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop102:9092,hadoop103:9092");
// 反序列化
properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
// 组id
properties.put(ConsumerConfig.GROUP_ID_CONFIG,"test3");
// 1 创建消费者
KafkaConsumer<String, String> kafkaConsumer = new KafkaConsumer<>(properties);
// 2 订阅主题
ArrayList<String> topics = new ArrayList<>();
topics.add("first");
kafkaConsumer.subscribe(topics);
// 指定位置进行消费
Set<TopicPartition> assignment = kafkaConsumer.assignment();
//  保证分区分配方案已经制定完毕
while (assignment.size() == 0){
    kafkaConsumer.poll(Duration.ofSeconds(1));
    assignment = kafkaConsumer.assignment();
}
// 指定消费的offset
for (TopicPartition topicPartition : assignment) {
    kafkaConsumer.seek(topicPartition,600);
}
// 3  消费数据
while (true){
    ConsumerRecords<String, String> consumerRecords = kafkaConsumer.poll(Duration.ofSeconds(1));
    for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {
        System.out.println(consumerRecord);
    }
}

4.4 指定时间消费

需求:在生产环境中,会遇到最近消费的几个小时数据异常,想重新按照时间消费。例如要求按照时间消费前一天的数据,怎么处理?

// 0 配置信息
Properties properties = new Properties();
// 连接
properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop102:9092,hadoop103:9092");
// 反序列化
properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
// 组id
properties.put(ConsumerConfig.GROUP_ID_CONFIG,"test3");
// 1 创建消费者
KafkaConsumer<String, String> kafkaConsumer = new KafkaConsumer<>(properties);
// 2 订阅主题
ArrayList<String> topics = new ArrayList<>();
topics.add("first");
kafkaConsumer.subscribe(topics);
// 指定位置进行消费
Set<TopicPartition> assignment = kafkaConsumer.assignment();
//  保证分区分配方案已经制定完毕
while (assignment.size() == 0){
   kafkaConsumer.poll(Duration.ofSeconds(1));
   assignment = kafkaConsumer.assignment();
}
// 希望把时间转换为对应的offset
HashMap<TopicPartition, Long> topicPartitionLongHashMap = new HashMap<>();
// 封装对应集合
for (TopicPartition topicPartition : assignment) {
   topicPartitionLongHashMap.put(topicPartition,System.currentTimeMillis() - 1 * 24 * 3600 * 1000);
}
Map<TopicPartition, OffsetAndTimestamp> topicPartitionOffsetAndTimestampMap = kafkaConsumer.offsetsForTimes(topicPartitionLongHashMap);
// 指定消费的offset
for (TopicPartition topicPartition : assignment) {
   OffsetAndTimestamp offsetAndTimestamp = topicPartitionOffsetAndTimestampMap.get(topicPartition);
   kafkaConsumer.seek(topicPartition,offsetAndTimestamp.offset());
}
// 3  消费数据
while (true){
   ConsumerRecords<String, String> consumerRecords = kafkaConsumer.poll(Duration.ofSeconds(1));
   for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {
       System.out.println(consumerRecord);
   }
}

五、消费者事务

重复消费:已经消费了数据,但是 offset 没提交。

漏消费:先提交 offset 后消费,有可能会造成数据的漏消费。

在这里插入图片描述

在这里插入图片描述

思考:怎么能做到既不漏消费也不重复消费呢?详看消费者事务。

如果想完成Consumer端的精准一次性消费,那么需要Kafka消费端将消费过程和提交offset过程做原子绑定。此时我们需要将Kafka的offset保存到支持事务的自定义介质(比 如MySQL)。

在这里插入图片描述

数据积压(消费者如何提高吞吐量)

在这里插入图片描述

参数名称描述
fetch.max.bytes默认 Default: 52428800(50 m)。消费者获取服务器端一批消息最大的字节数。如果服务器端一批次的数据大于该值(50m)仍然可以拉取回来这批数据,因此,这不是一个绝对最大值。一批次的大小受 message.max.bytes (broker config)or max.message.bytes (topic config)影响。
max.poll.records一次 poll 拉取数据返回消息的最大条数,默认是 500 条

到此这篇关于Java中的Kafka消费者详解的文章就介绍到这了,更多相关Kafka消费者内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Java 获取网站图片的示例代码

    Java 获取网站图片的示例代码

    本文主要介绍了Java 获取网站图片的示例代码,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-11-11
  • Mybatis plus的自动填充与乐观锁的实例详解(springboot)

    Mybatis plus的自动填充与乐观锁的实例详解(springboot)

    这篇文章主要介绍了Mybatis plus的自动填充与乐观锁的实例详解(springboot),本文给大家介绍的非常详细对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-11-11
  • mybatis类型处理器JSR310标准详解

    mybatis类型处理器JSR310标准详解

    这篇文章主要介绍了mybatis类型处理器JSR310标准详解,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-01-01
  • Struts2 自定义下拉框Tag标签

    Struts2 自定义下拉框Tag标签

    这篇文章主要介绍了Struts2 自定义下拉框Tag标签的相关资料,需要的朋友可以参考下
    2016-02-02
  • 基于web项目log日志指定输出文件位置配置方法

    基于web项目log日志指定输出文件位置配置方法

    下面小编就为大家分享一篇基于web项目log日志指定输出文件位置配置方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-04-04
  • java基于RMI远程过程调用详解

    java基于RMI远程过程调用详解

    这篇文章主要为大家详细介绍了java基于RMI远程过程调用,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2022-08-08
  • JAVA Integer类型自加实例详解

    JAVA Integer类型自加实例详解

    这篇文章主要介绍了JAVA Integer类型自加实例详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-05-05
  • Spring boot的上传图片功能实例详解

    Spring boot的上传图片功能实例详解

    Spring Boot是由Pivotal团队提供的全新框架,其设计目的是用来简化新Spring应用的初始搭建以及开发过程。这篇文章主要介绍了Spring boot 上传图片,需要的朋友可以参考下
    2018-03-03
  • SpringBoot项目中处理返回json的null值(springboot项目为例)

    SpringBoot项目中处理返回json的null值(springboot项目为例)

    本文以spring boot项目为例给大家介绍SpringBoot项目中处理返回json的null值问题,本文通过实例代码给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友参考下
    2019-10-10
  • Java 在线考试云平台的实现

    Java 在线考试云平台的实现

    读万卷书不如行万里路,只学书上的理论是远远不够的,只有在实战中才能获得能力的提升,本篇文章手把手带你用java+vue+springboot+mysql+maven实现一个前端vue后台java微服务的在线考试系统,大家可以在过程中查缺补漏,提升水平
    2021-11-11

最新评论