C# OpenVINO读取百度模型实现印章检测
效果
模型信息
Inputs
-------------------------
name:scale_factor
tensor:F32[?, 2]
name:image
tensor:F32[?, 3, 608, 608]
name:im_shape
tensor:F32[?, 2]
---------------------------------------------------------------
Outputs
-------------------------
name:multiclass_nms3_0.tmp_0
tensor:F32[?, 6]
name:multiclass_nms3_0.tmp_2
tensor:I32[?]
---------------------------------------------------------------
项目
代码
using OpenCvSharp; using Sdcb.OpenVINO; using System; using System.Collections.Generic; using System.Diagnostics; using System.Drawing; using System.IO; using System.Text; using System.Windows.Forms; namespace OpenVINO_Det_物体检测 { public partial class Form1 : Form { public Form1() { InitializeComponent(); } string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png"; string image_path = ""; string startupPath; string model_path; Mat src; string[] dicts; StringBuilder sb = new StringBuilder(); float confidence = 0.75f; private void button1_Click(object sender, EventArgs e) { OpenFileDialog ofd = new OpenFileDialog(); ofd.Filter = fileFilter; if (ofd.ShowDialog() != DialogResult.OK) return; pictureBox1.Image = null; image_path = ofd.FileName; pictureBox1.Image = new Bitmap(image_path); textBox1.Text = ""; src = new Mat(image_path); pictureBox2.Image = null; } unsafe private void button2_Click(object sender, EventArgs e) { if (pictureBox1.Image == null) { return; } pictureBox2.Image = null; textBox1.Text = ""; sb.Clear(); src = new Mat(image_path); Mat result_image = src.Clone(); model_path = "model/model.pdmodel"; Model rawModel = OVCore.Shared.ReadModel(model_path); int inpHeight = 608; int inpWidth = 608; var ad = OVCore.Shared.AvailableDevices; Console.WriteLine("可用设备"); foreach (var item in ad) { Console.WriteLine(item); } CompiledModel cm = OVCore.Shared.CompileModel(rawModel, "CPU"); InferRequest ir = cm.CreateInferRequest(); Stopwatch stopwatch = new Stopwatch(); Shape inputShape = new Shape(1, 608, 608); Size2f sizeRatio = new Size2f(1f * src.Width / inputShape[2], 1f * src.Height / inputShape[1]); Cv2.CvtColor(src, src, ColorConversionCodes.BGR2RGB); Point2f scaleRate = new Point2f(1f * inpWidth / src.Width, 1f * inpHeight / src.Height); Cv2.Resize(src, src, new OpenCvSharp.Size(), scaleRate.X, scaleRate.Y); Common.Normalize(src); float[] input_tensor_data = Common.ExtractMat(src); /* scale_factor 1,2 image 1,3,608,608 im_shape 1,2 */ Tensor input_scale_factor = Tensor.FromArray(new float[] { scaleRate.Y, scaleRate.X }, new Shape(1, 2)); Tensor input_image = Tensor.FromArray(input_tensor_data, new Shape(1, 3, 608, 608)); Tensor input_im_shape = Tensor.FromArray(new float[] { 608, 608 }, new Shape(1, 2)); ir.Inputs[0] = input_scale_factor; ir.Inputs[1] = input_image; ir.Inputs[2] = input_im_shape; double preprocessTime = stopwatch.Elapsed.TotalMilliseconds; stopwatch.Restart(); ir.Run(); double inferTime = stopwatch.Elapsed.TotalMilliseconds; stopwatch.Restart(); Tensor output_0 = ir.Outputs[0]; int num = (int)output_0.Shape.Dimensions[0]; float[] output_0_array = output_0.GetData<float>().ToArray(); for (int j = 0; j < num; j++) { int num12 = (int)Math.Round(output_0_array[j * 6]); float score = output_0_array[1 + j * 6]; if (score > this.confidence) { int num13 = (int)(output_0_array[2 + j * 6]); int num14 = (int)(output_0_array[3 + j * 6]); int num15 = (int)(output_0_array[4 + j * 6]); int num16 = (int)(output_0_array[5 + j * 6]); string ClassName = dicts[num12]; Rect r = Rect.FromLTRB(num13, num14, num15, num16); sb.AppendLine($"{ClassName}:{score:P0}"); Cv2.PutText(result_image, $"{ClassName}:{score:P0}", new OpenCvSharp.Point(r.TopLeft.X, r.TopLeft.Y - 10), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2); Cv2.Rectangle(result_image, r, Scalar.Red, thickness: 2); } } double postprocessTime = stopwatch.Elapsed.TotalMilliseconds; stopwatch.Stop(); double totalTime = preprocessTime + inferTime + postprocessTime; pictureBox2.Image = new Bitmap(result_image.ToMemoryStream()); sb.AppendLine($"Preprocess: {preprocessTime:F2}ms"); sb.AppendLine($"Infer: {inferTime:F2}ms"); sb.AppendLine($"Postprocess: {postprocessTime:F2}ms"); sb.AppendLine($"Total: {totalTime:F2}ms"); textBox1.Text = sb.ToString(); } private void Form1_Load(object sender, EventArgs e) { startupPath = Application.StartupPath; string classer_path = "lable.txt"; List<string> str = new List<string>(); StreamReader sr = new StreamReader(classer_path); string line; while ((line = sr.ReadLine()) != null) { str.Add(line); } dicts = str.ToArray(); image_path = "test_img/1.jpg"; pictureBox1.Image = new Bitmap(image_path); } } }
到此这篇关于C# OpenVINO读取百度模型实现印章检测的文章就介绍到这了,更多相关C#印章检测内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
相关文章
DataReader、DataSet、DataAdapter和DataView使用介绍
ADO.NET提供两个对象用于检索关系型数据并把它存储在内存中,分别是DataSet和DataReader,本文将详细介绍这几个对象的应用,有需求的朋友可以了解下2012-11-11
最新评论