C# 线程切换后上下文都去了哪里(.NET高级调试分析)

 更新时间:2023年12月25日 10:07:13   作者:一线码农  
总会有一些朋友问一个问题,在 Windows 中线程做了上下文切换,请问被切的线程他的寄存器上下文都去了哪里?这个问题其实比较底层,如果对操作系统没有个体系层面的理解以及做过源码分析,其实很难说明白,这篇我们就从.NET高级调试的角度分析,需要的朋友可以参考下

一:背景

1. 讲故事

总会有一些朋友问一个问题,在 Windows 中线程做了上下文切换,请问被切的线程他的寄存器上下文都去了哪里?能不能给我挖出来?这个问题其实比较底层,如果对操作系统没有个体系层面的理解以及做过源码分析,其实很难说明白,这篇我们就从.NET高级调试的角度试着分析一下吧。

二:寄存器上下文去哪了

1. 用户线程的两态空间

用C#代码创建的线程在操作系统层面上来说属于 用户态线程,这种线程拥有两个线程栈,哈哈,是不是打破了一些朋友的三观。分别为 用户态栈 和 内核态栈

为了方便讲解,写一段简单的测试代码,不断的调用 Sleep(1) 让代码在用户态和内核态不断的切换,也就能观察得到这两套栈空间,参考代码如下:

        static void Main(string[] args)
        {
            for (int i = 0; i < int.MaxValue; i++)
            {
                Thread.Sleep(1);
                Console.WriteLine($"i={i}");
            }
        }

将程序跑起来后我们用 windbg 附加,观察这个程序的上下文,参考如下:

0: kd> !process 0 2 ConsoleApp7.exe
PROCESS ffffe00185e33440
    SessionId: 2  Cid: 0f4c    Peb: 7ff73b7a8000  ParentCid: 15f4
    DirBase: 1573c1000  ObjectTable: ffffc00165357840  HandleCount: <Data Not Accessible>
    Image: ConsoleApp7.exe
        THREAD ffffe0018917a080  Cid 0f4c.0f50  Teb: 00007ff73b7ae000 Win32Thread: ffffe00185e3db20 WAIT: (DelayExecution) UserMode Alertable
            ffffffffffffffff  NotificationEvent
...
2: kd> dt nt!_KTHREAD ffffe0018917a080
   +0x028 InitialStack     : 0xffffd001`f8b64c90 Void
   +0x030 StackLimit       : 0xffffd001`f8b5f000 Void
   +0x038 StackBase        : 0xffffd001`f8b65000 Void
   ...
   +0x058 KernelStack      : 0xffffd001`f8b63c80 Void
   ...
   +0x0f0 Teb              : 0x00007ff7`3b7ae000 Void
   ...
2: kd> dt ntdll!_NT_TIB 0x00007ff7`3b7ae000
   +0x000 ExceptionList    : (null) 
   +0x008 StackBase        : 0x00000035`35790000 Void
   +0x010 StackLimit       : 0x00000035`3577e000 Void
   +0x018 SubSystemTib     : (null) 
   +0x020 FiberData        : 0x00000000`00001e00 Void
   +0x020 Version          : 0x1e00
   +0x028 ArbitraryUserPointer : (null) 
   +0x030 Self             : 0x00007ff7`3b7ae000 _NT_TIB
   ...

上面的信息非常清晰,两套栈空间 StackBase ~ StackLimit,分别为 0x0000003535790000 ~ 0x000000353577e000 和 0xffffd001f8b5f000~0xffffd001f8b65000

2. 理解系统调用

理解了线程的两套栈空间之后,接下来说的就是系统调用,简单来说就是C#线程从 用户态 进入到 内核态 时,他的用户态寄存器上下文会存放到 _KTRAP_FRAME 结构体中,而这个结构体会放在内核态的线程栈上,有些朋友可能有点懵,画个图如下:

接下来的问题是如何验证呢?非常简单,第一种是通过 !thread 观察线程栈上的 TrapFrame 标记,第二种是提取内核线程的 _KTHREAD.TrapFrame 字段,为了方便测试,直接在 Sleep 的内核函数 NtDelayExecution 处下一个进程级别的断点,输出如下:

1: kd> bp /p ffffe00185e33440  nt!NtDelayExecution
breakpoint 0 redefined
1: kd> g
Breakpoint 0 hit
nt!NtDelayExecution:
fffff802`e4e8dfb0 4883ec28        sub     rsp,28h
3: kd> !thread ffffe0018917a080
THREAD ffffe0018917a080  Cid 0f4c.0f50  Teb: 00007ff73b7ae000 Win32Thread: ffffe00185e3db20 RUNNING on processor 3
IRP List:
    ffffe00187633ca0: (0006,0358) Flags: 00060800  Mdl: 00000000
Not impersonating
DeviceMap                 ffffc0015d587160
Owning Process            ffffe00185e33440       Image:         ConsoleApp7.exe
Attached Process          N/A            Image:         N/A
Wait Start TickCount      21032          Ticks: 1 (0:00:00:00.015)
Context Switch Count      8187           IdealProcessor: 3             
UserTime                  00:00:00.015
KernelTime                00:00:00.125
Win32 Start Address ConsoleApp7_exe!wmainCRTStartup (0x00007ff73beb3c60)
Stack Init ffffd001f8b64c90 Current ffffd001f8b64550
Base ffffd001f8b65000 Limit ffffd001f8b5f000 Call 0000000000000000
Priority 10 BasePriority 8 PriorityDecrement 2 IoPriority 2 PagePriority 5
Child-SP          RetAddr               : Args to Child                                                           : Call Site
ffffd001`f8b64af8 fffff802`e4be9b63     : ffffe001`8917a080 00000000`00000014 ffffffff`ffffd8f0 ffffe001`886c3fe0 : nt!NtDelayExecution
ffffd001`f8b64b00 00007ff8`cf383b6a     : 00007ff8`cc0d3777 00000035`3578e198 00000000`00000001 00000000`00000000 : nt!KiSystemServiceCopyEnd+0x13 (TrapFrame @ ffffd001`f8b64b00)
00000035`3578e0d8 00007ff8`cc0d3777     : 00000035`3578e198 00000000`00000001 00000000`00000000 00000000`00000000 : ntdll!NtDelayExecution+0xa
00000035`3578e0e0 00007ff8`aec355f2     : 00000035`35977a40 00000000`00000001 00000035`00000000 00000000`00000000 : KERNELBASE!SleepEx+0xa7
(Inline Function) --------`--------     : --------`-------- --------`-------- --------`-------- --------`-------- : coreclr!ClrSleepEx+0xd (Inline Function @ 00007ff8`aec355f2) 
00000035`3578e180 00007ff8`aec354eb     : 06000000`00000001 00007ff8`aec35450 04000000`00000001 00000000`00000000 : coreclr!Thread::UserSleep+0xb2
00000035`3578e1d0 00007ff8`4f1ea095     : 00000035`3578e3c0 00000035`3578e4b8 00000000`00000001 00000000`00000001 : coreclr!ThreadNative::Sleep+0x9b 
3: kd> dt nt!_KTRAP_FRAME ffffd001`f8b64b00
   ...
   +0x030 Rax              : 0x00007ff7`3b770002
   +0x038 Rcx              : 0x00000035`358d33a0
   +0x040 Rdx              : 0x00000035`37b5c9b8
   +0x048 R8               : 0x00000035`37b5c9c8
   +0x050 R9               : 0x00000035`3578dd70
   +0x058 R10              : 0x00007ff7`3b780022
   +0x060 R11              : 0x00000035`3578e170
   +0x068 GsBase           : 0x00007ff7`3b7ae000
   +0x068 GsSwap           : 0x00007ff7`3b7ae000
   ...
   +0x0d0 FaultAddress     : 0x00000035`37b7b000
   ...
   +0x140 Rbx              : 1
   +0x148 Rdi              : 0
   +0x150 Rsi              : 1
   +0x158 Rbp              : 0x503b1
   +0x168 Rip              : 0x7ff8cf383b6a [Type: unsigned __int64]
   +0x180 Rsp              : 0x353578e0d8 [Type: unsigned __int64]
   ...

仔细观察上面的 RIP 和 RSP 值,都能看到它是在 Ring3 上的现场,分别对应着用户态的 ret 和 ntdll!NtDelayExecution,输出如下:

3: kd> uf 0x7ff8cf383b6a
ntdll!NtDelayExecution:
00007ff8`cf383b60 4c8bd1          mov     r10,rcx
00007ff8`cf383b63 b834000000      mov     eax,34h
00007ff8`cf383b68 0f05            syscall
00007ff8`cf383b6a c3              ret
3: kd> k
 # Child-SP          RetAddr               Call Site
00 ffffd001`f8b64af8 fffff802`e4be9b63     nt!NtDelayExecution
01 ffffd001`f8b64b00 00007ff8`cf383b6a     nt!KiSystemServiceCopyEnd+0x13
02 00000035`3578e0d8 00007ff8`cc0d3777     ntdll!NtDelayExecution+0xa
03 00000035`3578e0e0 00007ff8`aec355f2     KERNELBASE!SleepEx+0xa7
04 (Inline Function) --------`--------     coreclr!ClrSleepEx+0xd 
05 00000035`3578e180 00007ff8`aec354eb     coreclr!Thread::UserSleep+0xb2 
06 00000035`3578e1d0 00007ff8`4f1ea095     coreclr!ThreadNative::Sleep+0x9b
07 00000035`3578e320 00000035`3578e3c0     0x00007ff8`4f1ea095

3. 内核态线程上下文切换

上一节的_KTRAP_FRAME结构只是保存了 Ring3 -> Ring0 的现场,其实还有一个现场,很显然是调用线程执行 Sleep(1) 后让自己暂停并出让cpu核,为了让自己下一次得到完美的调度,此次必须要保存现场,那这个保存现场的逻辑在哪里的?其实是通过内核的 nt!KiSwapContext 函数实现的。

本来想在 nt!KiSwapContext 处下个断点,发现命中不了我的 Sleep 函数的 SwapContext,怀疑有cli之类的屏蔽外部中断导致的,这里只能反汇编源码了,参考如下:

3: kd> uf nt!KiSwapContext
nt!KiSwapContext:
fffff802`e4be3f30 4881ec38010000  sub     rsp,138h
fffff802`e4be3f37 488d842400010000 lea     rax,[rsp+100h]
fffff802`e4be3f3f 0f29742430      movaps  xmmword ptr [rsp+30h],xmm6
fffff802`e4be3f44 0f297c2440      movaps  xmmword ptr [rsp+40h],xmm7
fffff802`e4be3f49 440f29442450    movaps  xmmword ptr [rsp+50h],xmm8
fffff802`e4be3f4f 440f294c2460    movaps  xmmword ptr [rsp+60h],xmm9
fffff802`e4be3f55 440f29542470    movaps  xmmword ptr [rsp+70h],xmm10
fffff802`e4be3f5b 440f295880      movaps  xmmword ptr [rax-80h],xmm11
fffff802`e4be3f60 440f296090      movaps  xmmword ptr [rax-70h],xmm12
fffff802`e4be3f65 440f2968a0      movaps  xmmword ptr [rax-60h],xmm13
fffff802`e4be3f6a 440f2970b0      movaps  xmmword ptr [rax-50h],xmm14
fffff802`e4be3f6f 440f2978c0      movaps  xmmword ptr [rax-40h],xmm15
fffff802`e4be3f74 488918          mov     qword ptr [rax],rbx
fffff802`e4be3f77 48897808        mov     qword ptr [rax+8],rdi
fffff802`e4be3f7b 48897010        mov     qword ptr [rax+10h],rsi
fffff802`e4be3f7f 4c896018        mov     qword ptr [rax+18h],r12
fffff802`e4be3f83 4c896820        mov     qword ptr [rax+20h],r13
fffff802`e4be3f87 4c897028        mov     qword ptr [rax+28h],r14
fffff802`e4be3f8b 4c897830        mov     qword ptr [rax+30h],r15
fffff802`e4be3f8f 65488b1c2520000000 mov   rbx,qword ptr gs:[20h]
fffff802`e4be3f98 488bf9          mov     rdi,rcx
fffff802`e4be3f9b 488bf2          mov     rsi,rdx
fffff802`e4be3f9e 418bc8          mov     ecx,r8d
fffff802`e4be3fa1 e8ba020000      call    nt!SwapContext (fffff802`e4be4260)
fffff802`e4be3fa6 488d8c2400010000 lea     rcx,[rsp+100h]
fffff802`e4be3fae 0f28742430      movaps  xmm6,xmmword ptr [rsp+30h]
fffff802`e4be3fb3 0f287c2440      movaps  xmm7,xmmword ptr [rsp+40h]
fffff802`e4be3fb8 440f28442450    movaps  xmm8,xmmword ptr [rsp+50h]
fffff802`e4be3fbe 440f284c2460    movaps  xmm9,xmmword ptr [rsp+60h]
fffff802`e4be3fc4 440f28542470    movaps  xmm10,xmmword ptr [rsp+70h]
fffff802`e4be3fca 440f285980      movaps  xmm11,xmmword ptr [rcx-80h]
fffff802`e4be3fcf 440f286190      movaps  xmm12,xmmword ptr [rcx-70h]
fffff802`e4be3fd4 440f2869a0      movaps  xmm13,xmmword ptr [rcx-60h]
fffff802`e4be3fd9 440f2871b0      movaps  xmm14,xmmword ptr [rcx-50h]
fffff802`e4be3fde 440f2879c0      movaps  xmm15,xmmword ptr [rcx-40h]
fffff802`e4be3fe3 488b19          mov     rbx,qword ptr [rcx]
fffff802`e4be3fe6 488b7908        mov     rdi,qword ptr [rcx+8]
fffff802`e4be3fea 488b7110        mov     rsi,qword ptr [rcx+10h]
fffff802`e4be3fee 4c8b6118        mov     r12,qword ptr [rcx+18h]
fffff802`e4be3ff2 4c8b6920        mov     r13,qword ptr [rcx+20h]
fffff802`e4be3ff6 4c8b7128        mov     r14,qword ptr [rcx+28h]
fffff802`e4be3ffa 4c8b7930        mov     r15,qword ptr [rcx+30h]
fffff802`e4be3ffe 4881c438010000  add     rsp,138h
fffff802`e4be4005 c3              ret
1: kd> uf nt!SwapContext
nt!SwapContext:
...
nt!SwapContext+0xc9:
fffff802`1a9df329 0fae5918        stmxcsr dword ptr [rcx+18h]
fffff802`1a9df32d 48896758        mov     qword ptr [rdi+58h],rsp
fffff802`1a9df331 488b6658        mov     rsp,qword ptr [rsi+58h]
fffff802`1a9df335 f6470380        test    byte ptr [rdi+3],80h
fffff802`1a9df339 741c            je      nt!SwapContext+0xf7 (fffff802`1a9df357)  Branch
...

上面有一句非常重要的汇编代码 rsp,qword ptr [rsi+58h],翻译过来就是 esp=newThread.KernelStack,其实就是切换到新线程的内核态栈,并且在执行 nt!SwapContext 之前会进行现场保存,比如上面的 xmm 之类的寄存器,在切换完之后在新线程的同等位置上pop出这些现场。

最后一个问题是这个上下文保存在哪里呢?通过观察是还是在 InitialStack ~ KernelStack 之间,并且比 _KTRAP_FRAME 的位置要低,画个模型图如下:

感兴趣的朋友可以在那些能被 int 3 的 KiSwapContext 处下断点,比较下大小即可,截图如下:

三:总结

哈哈,是不是非常有意思,一个简单的 Sleep(1) 涉及到两块的寄存器上下文,并都保存在内核线程栈的 InitialStack ~ KernelStack 区间,这也算是加深了自己对操作系统的理解,也帮一些朋友解答了一些困惑!

到此这篇关于C# 线程切换后上下文都去了哪里的文章就介绍到这了,更多相关C# 线程切换内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • C#实现从windows剪贴板获取内容的方法

    C#实现从windows剪贴板获取内容的方法

    这篇文章主要介绍了C#实现从windows剪贴板获取内容的方法,涉及C#操作剪贴板的相关技巧,非常简单实用,需要的朋友可以参考下
    2015-05-05
  • 在C#中如何使用Dapper详解(译)

    在C#中如何使用Dapper详解(译)

    这篇文章主要给大家介绍了关于在C#中如何使用Dapper的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起看看吧
    2018-09-09
  • C# Winform 实现控件自适应父容器大小的示例代码

    C# Winform 实现控件自适应父容器大小的示例代码

    这篇文章主要介绍了C# Winform 实现控件自适应父容器大小的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-03-03
  • C#中实现登录功能的完整步骤

    C#中实现登录功能的完整步骤

    这篇文章主要给大家介绍了关于C#中实现登录功能的相关资料,我们在使用C#做项目的时候,基本上都需要制作登录界面,需要的朋友可以参考下
    2021-06-06
  • C# FileStream复制大文件

    C# FileStream复制大文件

    这篇文章主要为大家详细介绍了C# FileStream复制大文件的相关代码,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2019-05-05
  • 深入解析C#中的async和await关键字

    深入解析C#中的async和await关键字

    C#语言中的async和await关键字使得编写异步代码变得更加简洁和易读,本文将深入解析C#中的async和await,帮助您更好地理解它们的工作原理和用法,,需要的朋友可以参考下
    2024-05-05
  • C#实现简单播放mp3的方法

    C#实现简单播放mp3的方法

    这篇文章主要介绍了C#实现简单播放mp3的方法,涉及C#播放多媒体文件的技巧,具有一定参考借鉴价值,需要的朋友可以参考下
    2015-03-03
  • WCF实现的计算器功能实例

    WCF实现的计算器功能实例

    这篇文章主要介绍了WCF实现的计算器功能,结合具体实例形式较为详细的分析了WCF实现计算器功能的具体步骤与相关操作技巧,需要的朋友可以参考下
    2017-06-06
  • C#验证身份证号码正确性的实例代码(收藏)

    C#验证身份证号码正确性的实例代码(收藏)

    这篇文章主要介绍了C#验证身份证号码正确性的实例代码,包括18位号码和15位号码的校验,需要的朋友可以参考下
    2017-07-07
  • C#调用C++使用C++/CLI的实现

    C#调用C++使用C++/CLI的实现

    在C#开发过程中,我们可能会遇到需要调用Windows API 或是第三方库的场景,本文主要介绍了C#调用C++使用C++/CLI的实现,具有一定的参考价值,感兴趣的可以了解一下
    2024-03-03

最新评论