Rust中HashMap类型的使用详解

 更新时间:2024年03月14日 09:32:10   作者:希望_睿智  
Rust中一种常见的集合类型是哈希映射,本文主要介绍了Rust中HashMap类型的使用详解,包含创建访问修改遍历等,具有一定的参考价值,感兴趣的可以了解一下

概述

HashMap,被称为哈希表或散列表,是一种可以存储键值对的数据结构。它使用哈希函数将键映射到存储位置,以便可以快速检索和更新元素。这种数据结构在许多编程语言中都存在,而在Rust中,它被实现为HashMap<K, V>。其中,K表示键的类型,V表示值的类型。HashMap以哈希表为基础实现,允许我们在常数平均时间复杂度内完成插入、删除和查找操作。

HashMap的创建

Rust标准库中提供了std::collections::HashMap<K, V>,这是一个关联数组或映射。其中,K是键类型,必须实现Eq和Hash traits以确保键的唯一性和能够进行哈希计算。V是值类型,可以是任何Rust支持的类型。

每个键都会通过哈希函数转化为一个索引,并以此存储对应的值,从而使得通过键快速定位到值成为可能。当两个不同的键通过哈希函数得到相同的索引时,会发生“哈希冲突”。此时,HashMap会通过开放寻址法或者链地址法等策略来解决这个问题。

要使用HashMap,必须先引入std::collections::HashMap模块。新建HashMap,主要有以下几种方式。

1、使用new函数创建一个新的、空的HashMap。

use std::collections::HashMap;

fn main() {
    // 创建一个空的HashMap,键类型为String,值类型为i32
    let mut map_fruit: HashMap<String, i32> = HashMap::new();
    
    // 插入一些键值对
    map_fruit.insert("Lemon".to_string(), 66);
    map_fruit.insert("Apple".to_string(), 99);
    // 输出:{"Lemon": 66, "Apple": 99}
    println!("{:?}", map_fruit);
}

2、新建带有元素的HashMap。通过传入一个键值对的集合(比如:数组、切片或迭代器),我们可以在创建HashMap的同时初始化它。这可以通过collect方法来实现,它通常与vec!宏或数组字面量一起使用,以创建包含(key, value)元组的集合。在下面的示例代码中,我们首先创建了一个HashMap。它的键是String类型,值是i32类型。然后,我们使用vec!宏创建了一个包含三个(key, value)元组的向量,并使用into_iter方法将其转换为迭代器。最后,我们使用collect方法将其收集到一个HashMap中。

use std::collections::HashMap;

fn main() {
    let map_fruit: HashMap<String, i32> = vec![
        ("Lemon".to_string(), 66), 
        ("Apple".to_string(), 99)].into_iter().collect();
    
    // 输出:{"Lemon": 66, "Apple": 99}
    println!("{:?}", map_fruit);
}

3、HashMap::from是一个创建HashMap的便捷方法,主要用于从实现了IntoIterator特征且迭代器产出元组 (K, V) 的类型创建一个HashMap。

use std::collections::HashMap;

fn main() {
    let pairs = [("Lemon".to_string(), 66), ("Apple".to_string(), 99)];
    let map_fruit = HashMap::from(pairs);

    // 输出:{"Lemon": 66, "Apple": 99}
    println!("{:?}", map_fruit);
}

4、使用with_capacity函数创建预先分配指定容量的HashMap。注意:预设容量只是预留空间,实际使用的数量会根据插入的键值对自动增长。

use std::collections::HashMap;

fn main() {
    // 创建一个初始容量为5的HashMap
    let mut map_fruit: HashMap<String, i32> = HashMap::with_capacity(5);
    
    // 插入一些键值对
    map_fruit.insert("Lemon".to_string(), 66);
    map_fruit.insert("Apple".to_string(), 99);
    // 输出:{"Lemon": 66, "Apple": 99}
    println!("{:?}", map_fruit);
}

HashMap的访问

HashMap是一个存储键值对的数据结构,并且可以通过键来快速检索值。为了访问HashMap中的值,我们可以使用get方法或get_mut方法,具体取决于是否需要获取值的可变引用。

1、get方法用于获取与给定键相关联的值的不可变引用。如果键存在于HashMap中,get将返回Some(value),其中value是与该键相关联的值的引用。如果键不存在,它将返回None。

use std::collections::HashMap;

fn main() {
    let mut map_fruit = HashMap::new();
    map_fruit.insert("Lemon".to_string(), 66);
    map_fruit.insert("Apple".to_string(), 99);

    // 访问存在的键
    if let Some(value) = map_fruit.get("Apple") {
        println!("found value: {}", value);
    } else {
        println!("not found");
    }
  
    // 访问不存在的键
    if let Some(value) = map_fruit.get("Peach") {
        println!("found value: {}", value);
    } else {
        println!("not found");
    }
}

2、如果我们需要获取值的可变引用以便修改它,则应该使用get_mut方法。与get方法类似,如果键存在于HashMap中,get_mut将返回Some(&mut value),其中&mut value是与该键相关联的值的可变引用。如果键不存在,它将返回None。

use std::collections::HashMap;

fn main() {
    let mut map_fruit = HashMap::new();
    map_fruit.insert("Lemon".to_string(), 66);
    map_fruit.insert("Apple".to_string(), 99);

    // 访问存在的键
    if let Some(value) = map_fruit.get_mut("Apple") {
        *value = 100;
    } else {
        println!("not found");
    }

    // 输出:{"Apple": 100, "Lemon": 66}
    println!("{:?}", map_fruit);
  
    // 访问不存在的键
    if let Some(value) = map_fruit.get_mut("Peach") {
        println!("found value: {}", value);
    } else {
        println!("not found");
    }
}

HashMap的修改

1、插入新键值对。如果键不存在,使用insert方法将添加一个新的键值对。如果键已经存在,则会替换原有的值。

use std::collections::HashMap;

fn main() {
    // 创建一个空的HashMap,键类型为String,值类型为i32
    let mut map_fruit: HashMap<String, i32> = HashMap::new();
    
    // 插入一些键值对
    map_fruit.insert("Lemon".to_string(), 66);
    map_fruit.insert("Apple".to_string(), 99);
    // 输出:{"Lemon": 66, "Apple": 99}
    println!("{:?}", map_fruit);
}

2、如果需要根据键是否存在来执行不同的操作(比如:只在键不存在时插入值,或者在键存在时更新值),可以使用entry API。这提供了更细粒度的控制,并避免了不必要的查找。entry方法会根据键是否存在返回一个Entry枚举;or_insert方法会在键不存在时插入给定的值,并返回键的值的可变引用;and_modify方法会修改现有的值。

use std::collections::HashMap;

fn main() {
    let mut map_fruit = HashMap::new();
    map_fruit.insert("Lemon".to_string(), 66);
    map_fruit.insert("Apple".to_string(), 99);

    // 使用entry API插入新的键值对,并修改值为原来的2倍
    map_fruit.entry("Peach".to_string()).or_insert(256);
    map_fruit.entry("Peach".to_string()).and_modify(|v| *v *= 2);
    // 输出: {"Peach": 512, "Lemon": 66, "Apple": 99}
    println!("{:?}", map_fruit);
}

3、使用remove方法可以移除指定键的键值对。当我们调用remove方法并传入一个键时,如果该键存在于HashMap中,它会返回与该键相关联的值,并从HashMap中删除该键值对。如果键不存在,会返回None。

use std::collections::HashMap;

fn main() {
    let mut map_fruit = HashMap::new();
    map_fruit.insert("Lemon".to_string(), 66);
    map_fruit.insert("Apple".to_string(), 99);

    // 尝试删除并获取"Lemon"的值,会成功
    if let Some(value) = map_fruit.remove("Lemon") {
        println!("{} removed", value);
    } else {
        println!("not found");
    }

    // 尝试删除并获取"Peach"的值,会失败
    if let Some(value) = map_fruit.remove("Peach") {
        println!("{} removed", value);
    } else {
        println!("not found");
    }

    // 输出: {"Apple": 99}
    println!("{:?}", map_fruit);
}

HashMap的遍历

在Rust中,我们可以使用多种方式来遍历HashMap,包括:遍历所有的键、遍历所有的值、同时遍历键和值。

1、遍历所有的键。我们可以使用keys()方法来获取一个包含所有键的迭代器,并遍历它们。

use std::collections::HashMap;

fn main() {
    let pairs = [("Lemon".to_string(), 66), ("Apple".to_string(), 99)];
    let map_fruit = HashMap::from(pairs);

    // 分别输出:Lemon Apple
    for key in map_fruit.keys() {
        println!("{}", key);
    }
}

2、遍历所有的值。我们可以使用values()方法来获取一个包含所有值的迭代器,并遍历它们。

use std::collections::HashMap;

fn main() {
    let pairs = [("Lemon".to_string(), 66), ("Apple".to_string(), 99)];
    let map_fruit = HashMap::from(pairs);

    // 分别输出:99 66
    for value in map_fruit.values() {
        println!("{}", value);
    }
}

3、同时遍历键和值。如果需要同时访问键和值,我们可以使用iter()方法,它会返回一个包含键值对引用的迭代器。

use std::collections::HashMap;

fn main() {
    let pairs = [("Lemon".to_string(), 66), ("Apple".to_string(), 99)];
    let map_fruit = HashMap::from(pairs);

    // 分别输出:Apple: 99 Lemon: 66
    for (key, value) in map_fruit.iter() {
        println!("{}: {}", key, value);
    }
}

4、遍历并修改值。如果需要遍历HashMap并修改其中的值,我们可以使用iter_mut()方法,它会返回一个包含可变键值对引用的迭代器。注意:当使用iter_mut()方法时,不能有其他对HashMap或其任何元素的可变引用。因为Rust的借用规则要求:在同一时间,变量只能有一个可变引用存在。

use std::collections::HashMap;

fn main() {
    let pairs = [("Lemon".to_string(), 66), ("Apple".to_string(), 99)];
    let mut map_fruit = HashMap::from(pairs);

    // 修改值为原来的10倍
    for (key, value) in map_fruit.iter_mut() {
        *value *= 10; 
    }

    // 分别输出:Lemon: 660 Apple: 990
    for (key, value) in map_fruit.iter() {
        println!("{}: {}", key, value);
    }
}

HashMap的所有权

在Rust中,HashMap对插入其中的键值对的所有权规则,遵循Rust语言的核心所有权原则。这意味着,当我们将一个值放入HashMap时,会根据值的类型决定所有权如何转移。

1、复制所有权。对于实现了Copy特征的类型(比如:整数、浮点数等基本类型),插入HashMap时不会发生所有权转移,而是进行值的复制。

use std::collections::HashMap;

fn main() {
    let mut map = HashMap::new();
    let number: i32 = 66;
    map.insert("Lemon", number);
    
    // 这里仍可以继续使用number,因为复制了一份
    println!("{}", number);
}

2、转移所有权。如果插入到HashMap中的值是不可复制的类型(比如:String或自定义结构体),那么当调用insert方法时,该值的所有权会被转移给HashMap。这意味着,原变量将不再有效,并且不能再被使用。

use std::collections::HashMap;

fn main() {
    let mut map = HashMap::new();
    let peach = String::from("Peach");
    // peach的所有权转移到了HashMap中
    map.insert("Fruit", peach);
    
    // 这里访问peach会导致编译错误,因为它已经不再拥有所有权
    // println!("{}", peach);
}

3、引用所有权。如果想要存储指向数据的引用,而不是数据本身,可以使用引用类型(比如:&str或&T)。但是,引用的生命周期必须与引用的对象保持一致,确保在整个引用存在期间,对象也依然有效。

use std::collections::HashMap;

fn main() {
    let text = String::from("CSDN");
    let mut map = HashMap::new();
    map.insert("Hello", &text);
    // text必须一直有效,因为HashMap持有对它的引用
}

到此这篇关于Rust中HashMap类型的使用详解的文章就介绍到这了,更多相关Rust HashMap内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家! 

相关文章

  • Rust-使用dotenvy加载和使用环境变量的过程详解

    Rust-使用dotenvy加载和使用环境变量的过程详解

    系统的开发,测试和部署离不开环境变量,今天分享在Rust的系统开发中,使用dotenvy来读取和使用环境变量,感兴趣的朋友跟随小编一起看看吧
    2023-11-11
  • 使用Rust语言编写一个ChatGPT桌面应用示例详解

    使用Rust语言编写一个ChatGPT桌面应用示例详解

    这篇文章主要介绍了如何用Rust编写一个ChatGPT桌面应用,文中有详细的流程介绍,对大家的学习或工作有意一定的帮助,需要的朋友可以参考下
    2023-05-05
  • 详解Rust语言中anyhow的使用

    详解Rust语言中anyhow的使用

    anyhow是一个Rust库,用于简化错误处理和提供更好的错误报告,这个库适合用于应用程序,而不是用于创建库,因为它提供了一个非结构化的,方便使用的错误类型,本文就给大家讲讲Rust语言中anyhow的使用,需要的朋友可以参考下
    2023-08-08
  • Rust错误处理之`foo(...)?`的用法与错误类型转换小结

    Rust错误处理之`foo(...)?`的用法与错误类型转换小结

    foo(...)?语法糖为Rust的错误处理提供了极大的便利,通过结合map_err方法和From trait的实现,你可以轻松地处理不同类型的错误,并保持代码的简洁性和可读性,这篇文章主要介绍了Rust错误处理:`foo(...)?`的用法与错误类型转换,需要的朋友可以参考下
    2024-05-05
  • Rust 的 into_owned() 方法实例详解

    Rust 的 into_owned() 方法实例详解

    into_owned是Rust语言中std::borrow::Cow 枚举的一个方法,into_owned确保了调用者获得数据的独立所有权,无论Cow之前是引用还是已经拥有数据,本文给大家介绍Rust 的 into_owned() 方法,感兴趣的的朋友跟随小编一起看看吧
    2024-03-03
  • Go调用Rust方法及外部函数接口前置

    Go调用Rust方法及外部函数接口前置

    这篇文章主要为大家介绍了Go调用Rust方法及外部函数接口前置示例实现,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-06-06
  • Rust你不认识的所有权

    Rust你不认识的所有权

    所有权对大多数开发者而言是一个新颖的概念,它是 Rust 语言为高效使用内存而设计的语法机制。所有权概念是为了让 Rust 在编译阶段更有效地分析内存资源的有用性以实现内存管理而诞生的概念
    2023-01-01
  • Rust常用特型之Drop特型

    Rust常用特型之Drop特型

    本文主要介绍了Rust常用特型之Drop特型,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2024-03-03
  • Rust中箱、包和模块的学习笔记

    Rust中箱、包和模块的学习笔记

    Rust中有三个重要的组织概念:箱、包、模块,本文主要介绍了Rust中箱、包和模块的学习笔记,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧
    2024-03-03
  • Rust指南之生命周期机制详解

    Rust指南之生命周期机制详解

    Rust 生命周期机制是与所有权机制同等重要的资源管理机制,之所以引入这个概念主要是应对复杂类型系统中资源管理的问题,这篇文章主要介绍了Rust指南之生命周期机制详解,需要的朋友可以参考下
    2022-10-10

最新评论