Rust字符串类型全解析(最新推荐)

 更新时间:2024年09月26日 08:57:18   作者:wang_yb  
Rust语言中,字符串类型众多,设计初衷是为了确保程序的安全、高效和灵活性,本文详细解释了Rust中不同的字符串类型,感兴趣的朋友跟随小编一起看看吧

字符串是每种编程语言都绕不开的类型,

不过,在Rust中,你会看到远比其他语言更加丰富多样的字符串类型。

如下图:

为什么Rust中需要这么多种表示字符串的类型呢?

初学Rust时,可能无法理解为什么要这样设计?为什么要给使用字符串带来这么多不必要的复杂性?

其实,Rust中对于字符串的设计,优先考虑的是安全高效灵活

所以在易用性方面,感觉没有其他语言(比如python,golang)那么易于理解和掌握。

本文尝试解释Rust中的所有不同的字符串类型,以及它们各自的特点。

希望能让大家更好的理解Rust为了安全和发挥最大性能的同时,是如何处理字符串的。

1. 机器中的字符串

我们代码中的字符串或者数字,存储在机器中,都是二进制,也就是0和1组成的序列。

程序将二进制数据转换为人类可读的字符串 需要两个关键信息:

  • 字符编码
  • 字符串长度

常见的编码有ASCIIUTF-8等等,编码就是二进制序列对应的字符,

比如,ASCII8位二进制对应一个字符,所以它最多只能表示256种不同的字符。

UTF-8可以使用8位~32位二进制来表示一个字符,这意味着它可以编码超过一百万个字符,

包括世界上的每种语言和各种表情符号等复杂字符。

通过字符编码,我们可以将二进制和字符互相转换,

再通过字符串长度信息,我们将内存中的二进制转换为字符串时,就能知道何时停止。

Rust中的字符串,统一采用UTF-8编码,下面一一介绍各种字符串类型及其使用场景。

2. String 和 &str

String&strRust中使用最多的两种字符串类型,也是在使用中容易混淆的两种类型。

String是分配在堆上的,可增长的UTF-8字符串,

它拥有底层的数据,并且在超出其定义的范围被自动清理释放。

let my_string = String::from("databook");
println!(
    "pointer: {:p}, length: {}, capacity: {}",
    &my_string,
    my_string.len(),
    my_string.capacity()
);

对于一个String,主要部分有3个:

  • Pointer:指向堆内存中字符串的起始位置
  • Length:有效字符串的长度
  • Capacity:字符串my_string总共占用的空间

注意这里LengthCapacity的区别,Lengthmy_string中有效字符的长度,也就是字符串实际的长度;

Capacity表示系统为my_string分配的内存空间,一般来说,Capacity >= Length

通常不需要直接处理Capacity,但它的存在对于编写高效且资源敏感的Rust代码时很重要。

特别是,当你知道即将向String添加大量内容时,可能会事先手动保留足够的Capacity以避免多次内存重新分配。

&str则是一个字符串的切片,它表示一个连续的字符序列,

它是一个借用类型,并不拥有字符串数据,只包含指向切片开头的指针和切片长度。

let my_str: &str = "databook";
println!("pointer: {:p}, length: {}", &my_str, my_str.len());

注意,&str没有Capacity方法,因为它只是一个借用,内容不可能增加。

最后,对于String&str,使用时建议:

  • 在运行时动态创建或修改字符串数据时,请使用 String
  • 读取或分析字符串数据而不对其进行更改时,请使用 &str

3. Vec[u8] 和 &[u8]

这两种形式是将字符串表示位字节的形式,其中Vec[u8]是字节向量,&[u8]是字节切片。

它们只是将字符串中的各个字符转换成字节形式。

as_bytes方法可将&str转换为&[u8]

into_bytes方法可将String转换为Vec<u8>

let my_str: &str = "databook";
let my_string = String::from("databook");
let s: &[u8] = my_str.as_bytes();
let ss: Vec<u8> = my_string.into_bytes();
println!("s: {:?}", s);
println!("ss: {:?}", ss);
/* 运行结果
s: [100, 97, 116, 97, 98, 111, 111, 107]
ss: [100, 97, 116, 97, 98, 111, 111, 107]
*/

在UTF-8编码中,每个英文字母对应1个字节,而一个中文汉字对应3个字节

let my_str: &str = "中文";
let my_string = String::from("中文");
let s: &[u8] = my_str.as_bytes();
let ss: Vec<u8> = my_string.into_bytes();
println!("s: {:?}", s);
println!("ss: {:?}", ss);
/* 运行结果
s: [228, 184, 173, 230, 150, 135]
ss: [228, 184, 173, 230, 150, 135]
*/

Vec[u8]&[u8]以字节的形式存储字符串,不用关心字符串的具体编码,

这在网络中传输二进制文件或者数据包时非常有用,可以有效每次传输多少个字节。

4. str 系列

str类型本身是不能直接使用的,因为它的大小在编译期无法确定,不符合Rust的安全规则。

但是,它可以与其他具有特殊用途的指针类型一起使用。

4.1. Box<str>

如果需要一个字符串切片的所有权(&str是借用的,没有所有权),那么可以使用Box智能指针。

当你想要冻结字符串以防止进一步修改或通过删除额外容量来节省内存时,它非常有用。

比如,下面的代码,我们将一个String转换为Box<str>

这样,可以确保它不会在其他地方被修改,也可以删除它,因为Box<str>拥有字符串的所有权。

let my_string = String::from("databook");
let my_box_str = my_string.into_boxed_str();
println!("{}", my_box_str);
// 这一步会报错,因为所有权已经转移
// 这是 Box<str> 和 &str 的区别
// println!("{}", my_string);

4.2. Rc<str>

当你想要在多个地方共享一个不可变的字符串的所有权,但是又不克隆实际的字符串数据时,

可以尝试使用Rc<str>智能指针。

比如,我们有一个非常大的文本,想在多个地方使用,又不想复制多份占用内存,可以用Rc<str>

let my_str: &str = "very long text ....";
let rc_str1: Rc<str> = Rc::from(my_str);
let rc_str2 = Rc::clone(&rc_str1);
let rc_str3 = Rc::clone(&rc_str1);
println!("rc_str1: {}", rc_str1);
println!("rc_str2: {}", rc_str2);
println!("rc_str3: {}", rc_str3);
/* 运行结果
rc_str1: very long text ....
rc_str2: very long text ....
rc_str3: very long text ....
*/

这样,在不实际克隆字符串数据的情况下,让多个变量拥有其所有权。

4.3. Arc<str>

Arc<str>Rc<str>的功能类似,主要的区别在于Arc<str>是线程安全的。

如果在多线程环境下,请使用Arc<str>

let my_str: &str = "very long text ....";
let arc_str: Arc<str> = Arc::from(my_str);
let mut threads = vec![];
let mut cnt = 0;
while cnt < 5 {
    let s = Arc::clone(&arc_str);
    let t = thread::spawn(move || {
        println!("thread-{}: {}", cnt, s);
    });
    threads.push(t);
    cnt += 1;
}
for t in threads {
    t.join().unwrap();
}
/* 运行结果
thread-0: very long text ....
thread-3: very long text ....
thread-2: very long text ....
thread-1: very long text ....
thread-4: very long text ....
*/

上面的代码中,在5个线程中共享了字符串数据。

上面运行结果中,线程顺序是不固定的,多执行几遍会有不一样的顺序。

4.4. Cow<str>

CowCopy-on-Write(写入时复制)的缩写,

当你需要实现一个功能,根据字符串的内容来决定是否需要修改它,使用Cow就很合适。

比如,过滤敏感词汇时,我们把敏感词汇替换成xx

fn filter_words(input: &str) -> Cow<str> {
    if input.contains("sb") {
        let output = input.replace("sb", "xx");
        return Cow::Owned(output);
    }
    Cow::Borrowed(input)
}

当输入字符串input中含有敏感词sb时,会重新分配内存,生成新字符串;

否则直接使用原字符串,提高内存效率。

5. CStr 和 CString

CStrCString是与C语言交互时用于处理字符串的两种类型。

CStr用于在Rust中安全地访问由C语言分配的字符串;

CString用于在Rust中创建和管理可以安全传递给C语言函数的字符串。

C风格的字符串与Rust中的字符串实现方式不一样,

比如,C语言中的字符串都是以null字符\0结尾的字节数组,这点就与Rust很不一样。

所以Rust单独封装了这两种类型(CStrCString),可以安全的与C语言进行字符串交互,从而实现与现有的C语言库和API无缝集成。

6. OsStr 和 OsString

OsStr 和 OsString 是用于处理与操作系统兼容的字符串类型。

主要用于需要与操作系统API进行交互的场景,这些API一般特定于平台的字符串编码(比如Windows上的UTF-16,以及大多数Unix-like系统上的UTF-8)

OsStr 和OsString 也相当于strString的关系,所以OsStr 一般不直接在代码中使用,

使用比较多的是&OsStrOsString

这两个类型一般用于读取/写入操作系统环境变量或者与系统API交互时,帮助我们确保字符串以正确的格式传递。

7. Path 和 PathBuf

这两个类型看名字似乎和字符串关系不大,实际上它们是专门用来处理文件路径字符串的。

在不同的文件系统中,对于文件路径的格式,路径中允许使用的字符都不一样,比如,windows系统中文件路径甚至不区分大小写。

使用Path 和 PathBuf,我们编码时就不用分散精力去关心具体使用的是哪种文件系统。

PathPathBuf的主要区别在于可变性和所有权,

如果需要频繁读取和查询路径信息而不修改它,Path是一个好选择;

如果需要动态构建或修改路径内容,PathBuf则更加合适。

8. 总结

总之,Rust中字符串类型之所以多,是因为根据不同的用途对字符串类型做了分类。

这也是为了处理不同的应用场景时让程序发挥最大的性能,毕竟,安全高性能一直是Rust最大的卖点。

到此这篇关于Rust字符串类型全解析(最新推荐)的文章就介绍到这了,更多相关Rust字符串类型内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 深入了解Rust 结构体的使用

    深入了解Rust 结构体的使用

    结构体是一种自定义的数据类型,它允许我们将多个不同的类型组合成一个整体。下面我们就来学习如何定义和使用结构体,并对比元组与结构体之间的异同,需要的可以参考一下
    2022-11-11
  • rust将bitmap位图文件另存为png格式的方法

    rust将bitmap位图文件另存为png格式的方法

    通过添加依赖,转换函数和单元测试操作步骤来解决将bitmap位图文件另存为png格式文件,本文通过实例代码给大家介绍的非常详细,对rust bitmap位另存为png格式的操作方法感兴趣的朋友一起看看吧
    2024-03-03
  • Rust控制流运算符match的用法详解

    Rust控制流运算符match的用法详解

    match 是Rust中一个极为强大的控制流运算符,用于模式匹配和控制流的选择,它允许将一个值与一系列的模式相比较,根据匹配的模式执行相应代码,本文给大家详细介绍了Rust控制流运算符match的用法,需要的朋友可以参考下
    2024-01-01
  • Rust遍历 BinaryHeap的示例代码

    Rust遍历 BinaryHeap的示例代码

    Rust 的 BinaryHeap 结构体实现了迭代器接口,因此你可以遍历它,如果你想要遍历 BinaryHeap 中的所有元素,你可以使用 .into_iter() 方法将其转换为迭代器,并遍历其中的元素,本文通过实例介绍Rust遍历 BinaryHeap的相关知识,感兴趣的朋友一起看看吧
    2024-04-04
  • rust 包模块组织结构详解

    rust 包模块组织结构详解

    RUST提供了一系列的功能来帮助我们管理代码,包括决定哪些细节是暴露的、哪些细节是私有的,以及不同的作用域的命名管理,这篇文章主要介绍了rust 包模块组织结构的相关知识,需要的朋友可以参考下
    2023-12-12
  • Rust之模式与模式匹配的实现

    Rust之模式与模式匹配的实现

    Rust中的模式匹配功能强大且灵活,它极大地提高了代码的表达力和可读性,本文主要介绍了Rust之模式与模式匹配,具有一定的参考价值,感兴趣的可以了解一下
    2024-03-03
  • Rust使用Channel实现跨线程传递数据

    Rust使用Channel实现跨线程传递数据

    消息传递是一种很流行且能保证安全并发的技术,Rust也提供了一种基于消息传递的并发方式,在rust里使用标准库提供的Channel来实现,下面我们就来学习一下如何使用Channel实现跨线程传递数据吧
    2023-12-12
  • Rust多线程Web服务器搭建过程

    Rust多线程Web服务器搭建过程

    这篇文章主要介绍了Rust多线程 Web 服务器搭建过程,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2023-04-04
  • rust开发环境配置详细教程

    rust开发环境配置详细教程

    rust是一门比较新的编程语言,2015年5月15日,Rust编程语言核心团队正式宣布发布Rust 1.0版本,这篇文章主要介绍了rust开发环境配置 ,需要的朋友可以参考下
    2022-12-12
  • 教你使用RustDesk 搭建一个自己的远程桌面中继服务器

    教你使用RustDesk 搭建一个自己的远程桌面中继服务器

    这篇文章主要介绍了RustDesk 搭建一个自己的远程桌面中继服务器,主要包括服务端安装和客户端配置方法,配置好相关操作输入控制码即可发起远程或文件传输,本文通过图文给大家讲解的非常详细,需要的朋友可以参考下
    2022-08-08

最新评论