Spring Boot集成Milvus快速入门demo示例详解

 更新时间:2024年09月26日 09:18:17   作者:HBLOGA  
Milvus是一种高性能向量数据库,支持从笔记本到大型分布式系统的多环境运行,它以开源和云服务形式提供,是LFAI & Data Foundation的项目,采用Apache 2.0许可,Milvus特别支持高并行化和解耦的系统架构,使其能够随数据增长而扩展,支持各种复杂搜索功能,满足企业级AI应用需求

1.什么是Milvus?

Milvus 是一种高性能、高扩展性的向量数据库,可在从笔记本电脑到大型分布式系统等各种环境中高效运行。它既可以开源软件的形式提供,也可以云服务的形式提供。 Milvus 是 LF AI & Data Foundation 下的一个开源项目,以 Apache 2.0 许可发布。大多数贡献者都是高性能计算(HPC)领域的专家,擅长构建大型系统和优化硬件感知代码。核心贡献者包括来自 Zilliz、ARM、NVIDIA、AMD、英特尔、Meta、IBM、Salesforce、阿里巴巴和微软的专业人士

是什么让 Milvus 具有如此高的可扩展性

2022 年,Milvus 支持十亿级向量,2023 年,它以持续稳定的方式扩展到数百亿级,为 300 多家大型企业的大规模场景提供支持,包括 Salesforce、PayPal、Shopee、Airbnb、eBay、NVIDIA、IBM、AT&T、LINE、ROBLOX、Inflection 等。 Milvus 的云原生和高度解耦的系统架构确保了系统可以随着数据的增长而不断扩展:

  Milvus 本身是完全无状态的,因此可以借助 Kubernetes 或公共云轻松扩展。此外,Milvus 的各个组件都有很好的解耦,其中最关键的三项任务--搜索、数据插入和索引/压实--被设计为易于并行化的流程,复杂的逻辑被分离出来。这确保了相应的查询节点、数据节点和索引节点可以独立地向上和向下扩展,从而优化了性能和成本效率。

Milvus 支持的搜索类型

Milvus 支持各种类型的搜索功能,以满足不同用例的需求:

ANN 搜索:查找最接近查询向量的前 K 个向量。

过滤搜索:在指定的过滤条件下执行 ANN 搜索。

范围搜索:查找查询向量指定半径范围内的向量。

混合搜索:基于多个向量场进行 ANN 搜索。关键词搜索基于 BM25 的关键词搜索。

重新排序根据附加标准或辅助算法调整搜索结果的顺序,完善最初的 ANN 搜索结果。

获取:根据主键检索数据。

查询使用特定表达式检索数据。

2.测试环境搭建

  • First, we’ll need an instance of Milvus DB. The easiest and quickest way is to get a fully managed free Milvus DB instance provided by Zilliz Cloud: Vector Database built for enterprise-grade AI applications - Zilliz
  • For this, we’ll need to register for a Zilliz cloud account and follow the documentation for creating a free DB cluster.

3.代码工程

实验目的

实现对Milvus向量数据库的的crud

pom.xml

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <parent>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-parent</artifactId>
        <version>3.2.1</version>
    </parent>
    <modelVersion>4.0.0</modelVersion>
    <artifactId>Milvus</artifactId>
    <properties>
        <maven.compiler.source>17</maven.compiler.source>
        <maven.compiler.target>17</maven.compiler.target>
    </properties>
    <dependencies>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-autoconfigure</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>
            <scope>test</scope>
        </dependency>
        <dependency>
            <groupId>io.milvus</groupId>
            <artifactId>milvus-sdk-java</artifactId>
            <version>2.4.1</version>
        </dependency>
    </dependencies>
    <build>
        <pluginManagement>
            <plugins>
                <plugin>
                    <groupId>org.apache.maven.plugins</groupId>
                    <artifactId>maven-compiler-plugin</artifactId>
                    <version>3.8.1</version>
                    <configuration>
                        <fork>true</fork>
                        <failOnError>false</failOnError>
                    </configuration>
                </plugin>
                <plugin>
                    <groupId>org.apache.maven.plugins</groupId>
                    <artifactId>maven-surefire-plugin</artifactId>
                    <version>2.22.2</version>
                    <configuration>
                        <forkCount>0</forkCount>
                        <failIfNoTests>false</failIfNoTests>
                    </configuration>
                </plugin>
            </plugins>
        </pluginManagement>
    </build>
</project>

controller

package com.et.controller;
import com.et.service.HelloZillizVectorDBService;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
import java.util.HashMap;
import java.util.Map;
@RestController
public class HelloWorldController {
   @Autowired
   HelloZillizVectorDBService helloZillizVectorDBService;
    @RequestMapping("/hello")
    public Map<String, Object> showHelloWorld(){
        Map<String, Object> map = new HashMap<>();
      helloZillizVectorDBService.search();
        map.put("msg", "HelloWorld");
        return map;
    }
}

service

package com.et.service;
import io.milvus.client.MilvusServiceClient;
import io.milvus.grpc.DataType;
import io.milvus.grpc.DescribeCollectionResponse;
import io.milvus.grpc.MutationResult;
import io.milvus.grpc.SearchResults;
import io.milvus.param.*;
import io.milvus.param.collection.*;
import io.milvus.param.dml.InsertParam;
import io.milvus.param.dml.SearchParam;
import io.milvus.param.index.CreateIndexParam;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.stereotype.Service;
import java.util.*;
@Service
public class HelloZillizVectorDBService {
   @Value("${uri}")
   public String uri;
   @Value("${token}")
   public String token;
    public  void search() {
        // connect to milvus
        final MilvusServiceClient milvusClient = new MilvusServiceClient(
                ConnectParam.newBuilder()
                        .withUri(uri)
                        .withToken(token)
                        .build());
        System.out.println("Connecting to DB: " + uri);
        // Check if the collection exists
        String collectionName = "book";
        R<DescribeCollectionResponse> responseR =
                milvusClient.describeCollection(DescribeCollectionParam.newBuilder().withCollectionName(collectionName).build());
        if (responseR.getData() != null) {
            milvusClient.dropCollection(DropCollectionParam.newBuilder().withCollectionName(collectionName).build());
        }
        System.out.println("Success!");
        // create a collection with customized primary field: book_id_field
        int dim = 64;
        FieldType bookIdField = FieldType.newBuilder()
                .withName("book_id")
                .withDataType(DataType.Int64)
                .withPrimaryKey(true)
                .withAutoID(false)
                .build();
        FieldType wordCountField = FieldType.newBuilder()
                .withName("word_count")
                .withDataType(DataType.Int64)
                .build();
        FieldType bookIntroField = FieldType.newBuilder()
                .withName("book_intro")
                .withDataType(DataType.FloatVector)
                .withDimension(dim)
                .build();
        CreateCollectionParam createCollectionParam = CreateCollectionParam.newBuilder()
                .withCollectionName(collectionName)
                .withDescription("my first collection")
                .withShardsNum(2)
                .addFieldType(bookIdField)
                .addFieldType(wordCountField)
                .addFieldType(bookIntroField)
                .build();
        System.out.println("Creating example collection: " + collectionName);
        System.out.println("Schema: " + createCollectionParam);
        milvusClient.createCollection(createCollectionParam);
        System.out.println("Success!");
        //insert data with customized ids
        Random ran = new Random();
        int singleNum = 1000;
        int insertRounds = 2;
        long insertTotalTime = 0L;
        System.out.println("Inserting " + singleNum * insertRounds + " entities... ");
        for (int r = 0; r < insertRounds; r++) {
            List<Long> book_id_array = new ArrayList<>();
            List<Long> word_count_array = new ArrayList<>();
            List<List<Float>> book_intro_array = new ArrayList<>();
            for (long i = r * singleNum; i < (r + 1) * singleNum; ++i) {
                book_id_array.add(i);
                word_count_array.add(i + 10000);
                List<Float> vector = new ArrayList<>();
                for (int k = 0; k < dim; ++k) {
                    vector.add(ran.nextFloat());
                }
                book_intro_array.add(vector);
            }
            List<InsertParam.Field> fields = new ArrayList<>();
            fields.add(new InsertParam.Field(bookIdField.getName(), book_id_array));
            fields.add(new InsertParam.Field(wordCountField.getName(), word_count_array));
            fields.add(new InsertParam.Field(bookIntroField.getName(), book_intro_array));
            InsertParam insertParam = InsertParam.newBuilder()
                    .withCollectionName(collectionName)
                    .withFields(fields)
                    .build();
            long startTime = System.currentTimeMillis();
            R<MutationResult> insertR = milvusClient.insert(insertParam);
            long endTime = System.currentTimeMillis();
            insertTotalTime += (endTime - startTime) / 1000.00;
        }
        System.out.println("Succeed in " + insertTotalTime + " seconds!");
        // flush data
        System.out.println("Flushing...");
        long startFlushTime = System.currentTimeMillis();
        milvusClient.flush(FlushParam.newBuilder()
                .withCollectionNames(Collections.singletonList(collectionName))
                .withSyncFlush(true)
                .withSyncFlushWaitingInterval(50L)
                .withSyncFlushWaitingTimeout(30L)
                .build());
        long endFlushTime = System.currentTimeMillis();
        System.out.println("Succeed in " + (endFlushTime - startFlushTime) / 1000.00 + " seconds!");
        // build index
        System.out.println("Building AutoIndex...");
        final IndexType INDEX_TYPE = IndexType.AUTOINDEX;   // IndexType
        long startIndexTime = System.currentTimeMillis();
        R<RpcStatus> indexR = milvusClient.createIndex(
                CreateIndexParam.newBuilder()
                        .withCollectionName(collectionName)
                        .withFieldName(bookIntroField.getName())
                        .withIndexType(INDEX_TYPE)
                        .withMetricType(MetricType.L2)
                        .withSyncMode(Boolean.TRUE)
                        .withSyncWaitingInterval(500L)
                        .withSyncWaitingTimeout(30L)
                        .build());
        long endIndexTime = System.currentTimeMillis();
        System.out.println("Succeed in " + (endIndexTime - startIndexTime) / 1000.00 + " seconds!");
        // load collection
        System.out.println("Loading collection...");
        long startLoadTime = System.currentTimeMillis();
        milvusClient.loadCollection(LoadCollectionParam.newBuilder()
                .withCollectionName(collectionName)
                .withSyncLoad(true)
                .withSyncLoadWaitingInterval(500L)
                .withSyncLoadWaitingTimeout(100L)
                .build());
        long endLoadTime = System.currentTimeMillis();
        System.out.println("Succeed in " + (endLoadTime - startLoadTime) / 1000.00 + " seconds");
        // search
        final Integer SEARCH_K = 2;                       // TopK
        final String SEARCH_PARAM = "{\"nprobe\":10}";    // Params
        List<String> search_output_fields = Arrays.asList("book_id", "word_count");
        for (int i = 0; i < 10; i++) {
            List<Float> floatList = new ArrayList<>();
            for (int k = 0; k < dim; ++k) {
                floatList.add(ran.nextFloat());
            }
            List<List<Float>> search_vectors = Collections.singletonList(floatList);
            SearchParam searchParam = SearchParam.newBuilder()
                    .withCollectionName(collectionName)
                    .withMetricType(MetricType.L2)
                    .withOutFields(search_output_fields)
                    .withTopK(SEARCH_K)
                    .withVectors(search_vectors)
                    .withVectorFieldName(bookIntroField.getName())
                    .withParams(SEARCH_PARAM)
                    .build();
            long startSearchTime = System.currentTimeMillis();
            R<SearchResults> search = milvusClient.search(searchParam);
            long endSearchTime = System.currentTimeMillis();
            System.out.println("Searching vector: " + search_vectors);
            System.out.println("Result: " + search.getData().getResults().getFieldsDataList());
            System.out.println("search " + i + " latency: " + (endSearchTime - startSearchTime) / 1000.00 + " seconds");
        }
        milvusClient.close();
    }
}

application.yaml

用实际的值替换下面的参数

uri = https://in01-XXXXXXXXXXXXX.aws-us-west-2.vectordb.zillizcloud.com:XXXXX
token = db_admin:password (or ApiKey)

只是一些关键代码,所有代码请参见下面代码仓库

代码仓库

GitHub - Harries/springboot-demo: a simple springboot demo with some components for example: redis,solr,rockmq and so on.(Milvus)

4.测试

启动Spring Boot应用,访问http://127.0.0.1:8080/hello,查看控制台输出日志

Connecting to DB: https://in03-258dd5ae260ce1b.serverless.gcp-us-west1.cloud.zilliz.com
2024-09-25T21:29:30.636+08:00 ERROR 52861 --- [nio-8080-exec-2] i.m.client.AbstractMilvusGrpcClient : DescribeCollectionRequest collectionName:book failed, error code: 100, reason: can't find collection[database=db_258dd5ae260ce1b][collection=book]
2024-09-25T21:29:30.641+08:00 ERROR 52861 --- [nio-8080-exec-2] i.m.client.AbstractMilvusGrpcClient : DescribeCollectionRequest collectionName:book failed! Exception:{}
io.milvus.exception.ServerException: can't find collection[database=db_258dd5ae260ce1b][collection=book]
 at io.milvus.client.AbstractMilvusGrpcClient.handleResponse(AbstractMilvusGrpcClient.java:347) ~[milvus-sdk-java-2.3.4.jar:na]
 at io.milvus.client.AbstractMilvusGrpcClient.describeCollection(AbstractMilvusGrpcClient.java:655) ~[milvus-sdk-java-2.3.4.jar:na]
 at io.milvus.client.MilvusServiceClient.lambda$describeCollection$9(MilvusServiceClient.java:402) ~[milvus-sdk-java-2.3.4.jar:na]
 at io.milvus.client.MilvusServiceClient.retry(MilvusServiceClient.java:285) ~[milvus-sdk-java-2.3.4.jar:na]
 at io.milvus.client.MilvusServiceClient.describeCollection(MilvusServiceClient.java:402) ~[milvus-sdk-java-2.3.4.jar:na]
 at com.et.service.HelloZillizVectorDBService.search(HelloZillizVectorDBService.java:37) ~[classes/:na]
 at com.et.controller.HelloWorldController.showHelloWorld(HelloWorldController.java:18) ~[classes/:na]
 at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(Native Method) ~[na:na]
 at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:77) ~[na:na]
 at java.base/jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) ~[na:na]
 at java.base/java.lang.reflect.Method.invoke(Method.java:568) ~[na:na]
 at org.springframework.web.method.support.InvocableHandlerMethod.doInvoke(InvocableHandlerMethod.java:262) ~[spring-web-6.1.2.jar:6.1.2]
 at org.springframework.web.method.support.InvocableHandlerMethod.invokeForRequest(InvocableHandlerMethod.java:190) ~[spring-web-6.1.2.jar:6.1.2]
 at org.springframework.web.servlet.mvc.method.annotation.ServletInvocableHandlerMethod.invokeAndHandle(ServletInvocableHandlerMethod.java:118) ~[spring-webmvc-6.1.2.jar:6.1.2]
 at org.springframework.web.servlet.mvc.method.annotation.RequestMappingHandlerAdapter.invokeHandlerMethod(RequestMappingHandlerAdapter.java:917) ~[spring-webmvc-6.1.2.jar:6.1.2]
 at org.springframework.web.servlet.mvc.method.annotation.RequestMappingHandlerAdapter.handleInternal(RequestMappingHandlerAdapter.java:829) ~[spring-webmvc-6.1.2.jar:6.1.2]
 at org.springframework.web.servlet.mvc.method.AbstractHandlerMethodAdapter.handle(AbstractHandlerMethodAdapter.java:87) ~[spring-webmvc-6.1.2.jar:6.1.2]
 at org.springframework.web.servlet.DispatcherServlet.doDispatch(DispatcherServlet.java:1089) ~[spring-webmvc-6.1.2.jar:6.1.2]
 at org.springframework.web.servlet.DispatcherServlet.doService(DispatcherServlet.java:979) ~[spring-webmvc-6.1.2.jar:6.1.2]
 at org.springframework.web.servlet.FrameworkServlet.processRequest(FrameworkServlet.java:1014) ~[spring-webmvc-6.1.2.jar:6.1.2]
 at org.springframework.web.servlet.FrameworkServlet.doGet(FrameworkServlet.java:903) ~[spring-webmvc-6.1.2.jar:6.1.2]
 at jakarta.servlet.http.HttpServlet.service(HttpServlet.java:564) ~[tomcat-embed-core-10.1.17.jar:6.0]
 at org.springframework.web.servlet.FrameworkServlet.service(FrameworkServlet.java:885) ~[spring-webmvc-6.1.2.jar:6.1.2]
 at jakarta.servlet.http.HttpServlet.service(HttpServlet.java:658) ~[tomcat-embed-core-10.1.17.jar:6.0]
 at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:205) ~[tomcat-embed-core-10.1.17.jar:10.1.17]
 at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:149) ~[tomcat-embed-core-10.1.17.jar:10.1.17]
 at org.apache.tomcat.websocket.server.WsFilter.doFilter(WsFilter.java:51) ~[tomcat-embed-websocket-10.1.17.jar:10.1.17]
 at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:174) ~[tomcat-embed-core-10.1.17.jar:10.1.17]
 at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:149) ~[tomcat-embed-core-10.1.17.jar:10.1.17]
 at org.springframework.web.filter.RequestContextFilter.doFilterInternal(RequestContextFilter.java:100) ~[spring-web-6.1.2.jar:6.1.2]
 at org.springframework.web.filter.OncePerRequestFilter.doFilter(OncePerRequestFilter.java:116) ~[spring-web-6.1.2.jar:6.1.2]
 at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:174) ~[tomcat-embed-core-10.1.17.jar:10.1.17]
 at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:149) ~[tomcat-embed-core-10.1.17.jar:10.1.17]
 at org.springframework.web.filter.FormContentFilter.doFilterInternal(FormContentFilter.java:93) ~[spring-web-6.1.2.jar:6.1.2]
 at org.springframework.web.filter.OncePerRequestFilter.doFilter(OncePerRequestFilter.java:116) ~[spring-web-6.1.2.jar:6.1.2]
 at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:174) ~[tomcat-embed-core-10.1.17.jar:10.1.17]
 at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:149) ~[tomcat-embed-core-10.1.17.jar:10.1.17]
 at org.springframework.web.filter.CharacterEncodingFilter.doFilterInternal(CharacterEncodingFilter.java:201) ~[spring-web-6.1.2.jar:6.1.2]
 at org.springframework.web.filter.OncePerRequestFilter.doFilter(OncePerRequestFilter.java:116) ~[spring-web-6.1.2.jar:6.1.2]
 at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:174) ~[tomcat-embed-core-10.1.17.jar:10.1.17]
 at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:149) ~[tomcat-embed-core-10.1.17.jar:10.1.17]
 at org.apache.catalina.core.StandardWrapperValve.invoke(StandardWrapperValve.java:167) ~[tomcat-embed-core-10.1.17.jar:10.1.17]
 at org.apache.catalina.core.StandardContextValve.invoke(StandardContextValve.java:90) ~[tomcat-embed-core-10.1.17.jar:10.1.17]
 at org.apache.catalina.authenticator.AuthenticatorBase.invoke(AuthenticatorBase.java:482) ~[tomcat-embed-core-10.1.17.jar:10.1.17]
 at org.apache.catalina.core.StandardHostValve.invoke(StandardHostValve.java:115) ~[tomcat-embed-core-10.1.17.jar:10.1.17]
 at org.apache.catalina.valves.ErrorReportValve.invoke(ErrorReportValve.java:93) ~[tomcat-embed-core-10.1.17.jar:10.1.17]
 at org.apache.catalina.core.StandardEngineValve.invoke(StandardEngineValve.java:74) ~[tomcat-embed-core-10.1.17.jar:10.1.17]
 at org.apache.catalina.connector.CoyoteAdapter.service(CoyoteAdapter.java:340) ~[tomcat-embed-core-10.1.17.jar:10.1.17]
 at org.apache.coyote.http11.Http11Processor.service(Http11Processor.java:391) ~[tomcat-embed-core-10.1.17.jar:10.1.17]
 at org.apache.coyote.AbstractProcessorLight.process(AbstractProcessorLight.java:63) ~[tomcat-embed-core-10.1.17.jar:10.1.17]
 at org.apache.coyote.AbstractProtocol$ConnectionHandler.process(AbstractProtocol.java:896) ~[tomcat-embed-core-10.1.17.jar:10.1.17]
 at org.apache.tomcat.util.net.NioEndpoint$SocketProcessor.doRun(NioEndpoint.java:1744) ~[tomcat-embed-core-10.1.17.jar:10.1.17]
 at org.apache.tomcat.util.net.SocketProcessorBase.run(SocketProcessorBase.java:52) ~[tomcat-embed-core-10.1.17.jar:10.1.17]
 at org.apache.tomcat.util.threads.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1191) ~[tomcat-embed-core-10.1.17.jar:10.1.17]
 at org.apache.tomcat.util.threads.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:659) ~[tomcat-embed-core-10.1.17.jar:10.1.17]
 at org.apache.tomcat.util.threads.TaskThread$WrappingRunnable.run(TaskThread.java:61) ~[tomcat-embed-core-10.1.17.jar:10.1.17]
 at java.base/java.lang.Thread.run(Thread.java:840) ~[na:na]
Success!
Creating example collection: book
Schema: CreateCollectionParam(collectionName=book, shardsNum=2, description=my first collection, fieldTypes=[FieldType{name='book_id', type='Int64', elementType='None', primaryKey=true, partitionKey=false, autoID=false, params={}}, FieldType{name='word_count', type='Int64', elementType='None', primaryKey=false, partitionKey=false, autoID=false, params={}}, FieldType{name='book_intro', type='FloatVector', elementType='None', primaryKey=false, partitionKey=false, autoID=false, params={dim=64}}], partitionsNum=0, consistencyLevel=BOUNDED, databaseName=null, enableDynamicField=false)
Success!
Inserting 2000 entities... 
Succeed in 1 seconds!
Flushing...
Succeed in 3.019 seconds!
Building AutoIndex...
Succeed in 3.092 seconds!
Loading collection...
Succeed in 1.915 seconds
Searching vector: [[0.9944244, 0.693386, 0.23255765, 0.25712538, 0.8882742, 0.31521088, 0.10415316, 0.63687223, 0.23532659, 0.9057376, 0.23146588, 0.7598192, 0.18651527, 0.22246557, 0.71210265, 0.9853572, 0.7285811, 0.49920946, 0.5757665, 0.9907576, 0.6746712, 0.53398585, 0.3538667, 0.90167266, 0.09474373, 0.24573046, 0.19975495, 0.9486663, 0.38426965, 0.94270027, 0.0389961, 0.3591758, 0.092348695, 0.35975152, 0.0286901, 0.39673442, 0.59137595, 0.9894001, 0.7167906, 0.92300236, 0.95593584, 0.041143477, 0.26055408, 0.37320316, 0.64292294, 0.9690605, 0.8847745, 0.78260505, 0.92037845, 0.3789205, 0.13551015, 0.30201513, 0.49969083, 0.9982949, 0.066904426, 0.2057795, 0.58327323, 0.5174314, 0.14389539, 0.5790425, 0.9743603, 0.50154245, 0.6616634, 0.91518396]]
Result: [type: Int64
field_name: "book_id"
scalars {
 long_data {
 data: 1901
 data: 420
 }
}
field_id: 100
, type: Int64
field_name: "word_count"
scalars {
 long_data {
 data: 11901
 data: 10420
 }
}
field_id: 101
]
search 0 latency: 0.884 seconds
Searching vector: [[0.012040913, 0.26888567, 0.8862797, 0.6432027, 0.72606975, 0.9214382, 0.8760127, 0.91277415, 0.6635162, 0.41956168, 0.21806747, 0.7068079, 0.562168, 0.28791857, 0.33324522, 0.83323824, 0.25118947, 0.8217658, 0.8863152, 0.5157847, 0.49335915, 0.39096528, 0.47110444, 0.9944315, 0.66889536, 0.98959273, 0.59788084, 0.7379387, 0.2901945, 0.6934935, 0.031101823, 0.93097365, 0.9596271, 0.32376093, 0.34571892, 0.8362285, 0.99687576, 0.7937399, 0.78078747, 0.34658694, 0.10428548, 0.2792738, 0.8640791, 0.57405174, 0.9725894, 0.20060968, 0.10779828, 0.101415455, 0.09755844, 0.7593852, 0.28356135, 0.6208364, 0.55110157, 0.42079234, 0.27782845, 0.06248188, 0.37675542, 0.7703235, 0.41342628, 0.07876682, 0.3361001, 0.8730568, 0.9582374, 0.38860106]]
Result: [type: Int64
field_name: "book_id"
scalars {
 long_data {
 data: 118
 data: 776
 }
}
field_id: 100
, type: Int64
field_name: "word_count"
scalars {
 long_data {
 data: 10118
 data: 10776
 }
}
field_id: 101
]
search 1 latency: 0.193 seconds
Searching vector: [[0.17430764, 0.9034548, 0.59125566, 0.13526762, 0.48277777, 0.9429901, 0.07483035, 0.09548402, 0.7757748, 0.5250427, 0.70900095, 0.46090156, 0.055408716, 0.5705429, 0.19141757, 0.5524303, 0.9825838, 0.6484894, 0.84965557, 0.41863292, 0.69617915, 0.123098195, 0.3800782, 0.8989199, 0.30235797, 0.33991778, 0.9502303, 0.6279421, 0.3922888, 0.94838214, 0.98462456, 0.23758143, 0.5195748, 0.16518217, 0.044407308, 0.9360681, 0.086349785, 0.9243839, 0.7705846, 0.85942554, 0.33542854, 0.6248715, 0.9321932, 0.3886962, 0.23936534, 0.5275571, 0.7020884, 0.68789816, 0.70815116, 0.7435949, 0.5740872, 0.36369282, 0.22608125, 0.42592448, 0.9893665, 0.59022135, 0.37368262, 0.9808166, 0.113725126, 0.63403445, 0.6192569, 0.3703097, 0.11013746, 0.19765383]]
Result: [type: Int64
field_name: "word_count"
scalars {
 long_data {
 data: 11983
 data: 10315
 }
}
field_id: 101
, type: Int64
field_name: "book_id"
scalars {
 long_data {
 data: 1983
 data: 315
 }
}
field_id: 100
]
search 2 latency: 0.21 seconds
Searching vector: [[0.78146076, 0.4127342, 0.19565648, 0.7598609, 0.0024149418, 0.20477176, 0.2239834, 0.40071744, 0.34123564, 0.69816893, 0.16385543, 0.8746263, 0.93988293, 0.14641893, 0.77087975, 0.74109954, 0.44419652, 0.686166, 0.8017639, 0.62660855, 0.12844962, 0.09513128, 0.0733701, 0.50885594, 0.19533062, 0.6489767, 0.5061082, 0.76457673, 0.556717, 0.62532073, 0.44644332, 0.47170228, 0.17381704, 0.031323075, 0.1744278, 0.61520636, 0.7062351, 0.48471195, 0.659993, 0.8125965, 0.8243918, 0.2953208, 0.6301986, 0.48987025, 0.44276655, 0.87922597, 0.59580773, 0.03247899, 0.2750023, 0.91016316, 0.109629214, 0.8797219, 0.26653385, 0.55840206, 0.5943634, 0.28695053, 0.4747029, 0.7866449, 0.19065481, 0.15052843, 0.017061412, 0.73239404, 0.29625612, 0.86883324]]
Result: [type: Int64
field_name: "word_count"
scalars {
 long_data {
 data: 11674
 data: 11420
 }
}
field_id: 101
, type: Int64
field_name: "book_id"
scalars {
 long_data {
 data: 1674
 data: 1420
 }
}
field_id: 100
]
search 3 latency: 0.234 seconds
Searching vector: [[0.5506256, 0.4888333, 0.55734605, 0.33249807, 0.9612315, 0.14942867, 0.74893725, 0.32297194, 0.19399291, 0.3686679, 0.16189837, 0.51538646, 0.4324317, 0.24171656, 0.17148066, 0.98530066, 0.70252293, 0.36399698, 0.67156136, 0.30545527, 0.8341777, 0.10815537, 0.04843366, 0.5751087, 0.030209243, 0.5765392, 0.56931233, 0.7783963, 0.87335634, 0.24376905, 0.15837216, 0.8376091, 0.8253407, 0.90347946, 0.91477525, 0.3711217, 0.34623754, 0.3486765, 0.7336032, 0.1333232, 0.9737603, 0.9348897, 0.56583005, 0.19536161, 0.66466415, 0.25348592, 0.1945247, 0.30146033, 0.6067432, 0.0488891, 0.61155295, 0.32729924, 0.58033705, 0.9833621, 0.805477, 0.0863865, 0.88150877, 0.13743609, 0.8735751, 0.730011, 0.2418676, 0.24961507, 0.15848696, 0.90943843]]
Result: [type: Int64
field_name: "book_id"
scalars {
 long_data {
 data: 632
 data: 71
 }
}
field_id: 100
, type: Int64
field_name: "word_count"
scalars {
 long_data {
 data: 10632
 data: 10071
 }
}
field_id: 101
]
search 4 latency: 0.246 seconds
Searching vector: [[0.097262084, 0.67786944, 0.5956394, 0.599271, 0.80228144, 0.20551127, 0.60712826, 0.7927536, 0.8707964, 0.92879516, 0.8600838, 0.088315904, 0.28391147, 0.13210869, 0.6447914, 0.79745305, 0.1630668, 0.87363887, 0.8451723, 0.56345624, 0.30312908, 0.8302696, 0.7499766, 0.42542475, 0.9217818, 0.16116339, 0.76864123, 0.7699597, 0.55911744, 0.88660645, 0.4057927, 0.05212158, 0.9849399, 0.6994747, 0.25052422, 0.5464197, 0.6989017, 0.6539669, 0.8416681, 0.60720086, 0.67637247, 0.74851876, 0.87226254, 0.015863419, 0.2851053, 0.741167, 0.5423461, 0.4004978, 0.21673638, 0.32579643, 0.90930575, 0.5031407, 0.11341238, 0.042031705, 0.72256076, 0.20273715, 0.67203254, 0.49100053, 0.5708503, 0.78067535, 0.053472757, 0.8504045, 0.77535784, 0.43355346]]
Result: [type: Int64
field_name: "book_id"
scalars {
 long_data {
 data: 1240
 data: 1074
 }
}
field_id: 100
, type: Int64
field_name: "word_count"
scalars {
 long_data {
 data: 11240
 data: 11074
 }
}
field_id: 101
]
search 5 latency: 0.233 seconds
Searching vector: [[0.6666099, 0.60750645, 0.5930602, 0.62844944, 0.91999257, 0.40563875, 0.16784662, 0.58380336, 0.49874693, 0.9921237, 0.70105964, 0.109129846, 0.62001497, 0.29218578, 0.38023782, 0.80481774, 0.61428535, 0.45924222, 0.2801816, 0.40553528, 0.9678988, 0.4772452, 0.26234365, 0.934155, 0.6174237, 0.14148414, 0.5784021, 0.54518217, 0.11126441, 0.41204536, 0.61628705, 0.09558219, 0.12766111, 0.6261982, 0.899587, 0.8454346, 0.46918148, 0.5451731, 0.904986, 0.41042298, 0.82801545, 0.8856106, 0.5411191, 0.45282567, 0.448133, 0.8004736, 0.73305, 0.28807688, 0.99202037, 0.69817233, 0.67967457, 0.9214035, 0.97179586, 0.05739242, 0.15004623, 0.2254278, 0.6256416, 0.25962013, 0.015357256, 0.37749702, 0.037437856, 0.43823433, 0.88566333, 0.03802377]]
Result: [type: Int64
field_name: "book_id"
scalars {
 long_data {
 data: 840
 data: 758
 }
}
field_id: 100
, type: Int64
field_name: "word_count"
scalars {
 long_data {
 data: 10840
 data: 10758
 }
}
field_id: 101
]
search 6 latency: 0.204 seconds
Searching vector: [[0.11513382, 0.46449423, 0.74709874, 0.45208257, 0.09473729, 0.254663, 0.34211916, 0.9703239, 0.93299186, 0.9023329, 0.3711759, 0.8269761, 0.032090902, 0.7948698, 0.5412331, 0.18797356, 0.52153504, 0.9574906, 0.86989266, 0.9373586, 0.95098126, 0.74318993, 0.25189924, 0.7419808, 0.94729316, 0.5275025, 0.08891839, 0.100687325, 0.71073514, 0.915546, 0.20827055, 0.21283334, 0.29924893, 0.7821449, 0.4894712, 0.10083097, 0.43401027, 0.16695005, 0.6697829, 0.8920079, 0.09012061, 0.073818564, 0.005478561, 0.046307027, 0.77760696, 0.7813985, 0.57121813, 0.53898925, 0.112255454, 0.57960665, 0.43604386, 0.14278823, 0.79370797, 0.38984406, 0.16432655, 0.46382785, 0.29833382, 0.50633746, 0.6599931, 0.87258536, 0.6334079, 0.47853124, 0.3620978, 0.9284326]]
Result: [type: Int64
field_name: "word_count"
scalars {
 long_data {
 data: 11609
 data: 10760
 }
}
field_id: 101
, type: Int64
field_name: "book_id"
scalars {
 long_data {
 data: 1609
 data: 760
 }
}
field_id: 100
]
search 7 latency: 0.201 seconds
Searching vector: [[0.14196914, 0.72220755, 0.97196966, 0.95760065, 0.17740268, 0.84783286, 0.96259207, 0.6342059, 0.14442027, 0.49199748, 0.008492172, 0.397287, 0.9179648, 0.960828, 0.5513112, 0.36929417, 0.5710163, 0.5876399, 0.05758536, 0.8194362, 0.061840713, 0.98121184, 0.1594106, 0.72564113, 0.52452654, 0.42187476, 0.027037859, 0.3591584, 0.8754618, 0.4417299, 0.68962467, 0.16419351, 0.9725907, 0.0099541545, 0.98403805, 0.29020512, 0.7518712, 0.9071815, 0.71259576, 0.6060254, 0.90245855, 0.502836, 0.97288334, 0.67282623, 0.34302354, 0.7001372, 0.48336947, 0.15780938, 0.21866882, 0.7550309, 0.7676532, 0.35363984, 0.37162405, 0.74286896, 0.9311386, 0.5419771, 0.34793264, 0.8912447, 0.32318318, 0.75553536, 0.41343224, 0.8355903, 0.93488806, 0.29507792]]
Result: [type: Int64
field_name: "book_id"
scalars {
 long_data {
 data: 443
 data: 1132
 }
}
field_id: 100
, type: Int64
field_name: "word_count"
scalars {
 long_data {
 data: 10443
 data: 11132
 }
}
field_id: 101
]
search 8 latency: 0.227 seconds
Searching vector: [[0.77036685, 0.11818504, 0.9503699, 0.029416382, 0.02396065, 0.23895812, 0.41341382, 0.82225484, 0.8573582, 0.09137666, 0.6607858, 0.3046307, 0.07275897, 0.25788748, 0.6302589, 0.95142424, 0.46371943, 0.99155724, 0.7007737, 0.9712237, 0.043981254, 0.6340834, 0.6424302, 0.7176585, 0.6954333, 0.091201425, 0.026640236, 0.15468991, 0.36369103, 0.9462943, 0.0063298345, 0.72643405, 0.15416229, 0.9989488, 0.3602597, 0.8026867, 0.52236784, 0.8901442, 0.69515526, 0.59382325, 0.7458346, 0.95818526, 0.5083475, 0.09321368, 0.8753361, 0.26350176, 0.6790923, 0.6423713, 0.833, 0.5457574, 0.8288555, 0.1950497, 0.52434474, 0.7186958, 0.77294624, 0.24331266, 0.10928261, 0.8677729, 0.084388554, 0.7637791, 0.6102848, 0.8594893, 0.16542625, 0.9389486]]
Result: [type: Int64
field_name: "book_id"
scalars {
 long_data {
 data: 1938
 data: 668
 }
}
field_id: 100
, type: Int64
field_name: "word_count"
scalars {
 long_data {
 data: 11938
 data: 10668
 }
}
field_id: 101
]
search 9 latency: 1.076 seconds

5.引用

The High-Performance Vector Database Built for Scale | MilvusMilvus | Open-source Vector Databse created by Zilliz

到此这篇关于Spring Boot集成Milvus快速入门demo的文章就介绍到这了,更多相关Spring Boot集成Milvus内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:

相关文章

  • Spring-Boot 访问外部接口的方案总结

    Spring-Boot 访问外部接口的方案总结

    在Spring-Boot项目开发中,存在着本模块的代码需要访问外面模块接口,或外部url链接的需求,针对这一需求目前存在着三种解决方案,下面将对这三种方案进行整理和说明,对Spring-Boot 访问外部接口方案感兴趣的朋友跟随小编一起看看吧
    2022-12-12
  • 2020最新eclipse安装过程及细节

    2020最新eclipse安装过程及细节

    这篇文章主要介绍了2020最新eclipse安装过程及细节,本文通过图文并茂的形式给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-08-08
  • Java网络通信中ServerSocket的设计优化方案

    Java网络通信中ServerSocket的设计优化方案

    今天小编就为大家分享一篇关于Java网络通信中ServerSocket的设计优化方案,小编觉得内容挺不错的,现在分享给大家,具有很好的参考价值,需要的朋友一起跟随小编来看看吧
    2019-04-04
  • Java实现简易界面通讯录

    Java实现简易界面通讯录

    这篇文章主要为大家详细介绍了Java实现简易界面通讯录,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2022-04-04
  • SpringBoot2整合Drools规则引擎及案例详解

    SpringBoot2整合Drools规则引擎及案例详解

    这篇文章主要介绍了SpringBoot2整合Drools规则引擎及案例详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-10-10
  • 解决Error:(5,55)java:程序包org.springframework.cloud.netflix.eureka.server不存在问题

    解决Error:(5,55)java:程序包org.springframework.cloud.netflix.eure

    这篇文章主要介绍了解决Error:(5,55)java:程序包org.springframework.cloud.netflix.eureka.server不存在问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2023-11-11
  • Java实现过滤掉map集合中key或value为空的值示例

    Java实现过滤掉map集合中key或value为空的值示例

    这篇文章主要介绍了Java实现过滤掉map集合中key或value为空的值,涉及java针对map的简单遍历、判断、移除等相关操作技巧,需要的朋友可以参考下
    2018-06-06
  • SpringBoot使用榛子云实现手机短信发送验证码

    SpringBoot使用榛子云实现手机短信发送验证码

    发送验证码主要用于验证用户手机的合法性及敏感操作的身份验证,本文使用了SpringBoot实现,需要的朋友们下面随着小编来一起学习学习吧
    2021-05-05
  • Java中Jackson快速入门

    Java中Jackson快速入门

    这篇文章主要介绍了Java中Jackson快速入门,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-01-01
  • Java数组的基本学习教程

    Java数组的基本学习教程

    这篇文章主要介绍了Java数组的基本学习教程,是Java入门学习中的基础知识,需要的朋友可以参考下
    2015-10-10

最新评论