python+OpenCV人脸识别考勤系统实现的详细代码
一、环境配置
- 安装 Python
请确保您已经安装了 Python 3.x。可以在Python 官网下载并安装。
- 安装所需库
在命令提示符或终端中运行以下命令来安装所需的库:
pip install opencv-python pip install opencv-contrib-python pip install numpy pip install face-recognition
二、创建数据集
- 创建文件夹结构
在项目目录下创建如下文件夹结构:
attendance-system/
├── dataset/
│ ├── person1/
│ ├── person2/
│ └── ...
└── src/
将每个人的照片放入对应的文件夹中,例如:
attendance-system/
├── dataset/
│ ├── person1/
│ │ ├── 01.jpg
│ │ ├── 02.jpg
│ │ └── ...
│ ├── person2/
│ │ ├── 01.jpg
│ │ ├── 02.jpg
│ │ └── ...
│ └── ...
└── src/
三、实现人脸识别算法
在 src
文件夹下创建一个名为 face_recognition.py
的文件,并添加以下代码:
import os import cv2 import face_recognition import numpy as np def load_images_from_folder(folder): images = [] for filename in os.listdir(folder): img = cv2.imread(os.path.join(folder, filename)) if img is not None: images.append(img) return images def create_known_face_encodings(root_folder): known_face_encodings = [] known_face_names = [] for person_name in os.listdir(root_folder): person_folder = os.path.join(root_folder, person_name) images = load_images_from_folder(person_folder) for image in images: face_encoding = face_recognition.face_encodings(image)[0] known_face_encodings.append(face_encoding) known_face_names.append(person_name) return known_face_encodings, known_face_names def recognize_faces_in_video(known_face_encodings, known_face_names): video_capture = cv2.VideoCapture(0) face_locations = [] face_encodings = [] face_names = [] process_this_frame = True while True: ret, frame = video_capture.read() small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25) rgb_small_frame = small_frame[:, :, ::-1] if process_this_frame: face_locations = face_recognition.face_locations(rgb_small_frame) face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations) face_names = [] for face_encoding in face_encodings: matches = face_recognition.compare_faces(known_face_encodings, face_encoding) name = "Unknown" face_distances = face_recognition.face_distance(known_face_encodings, face_encoding) best_match_index = np.argmin(face_distances) if matches[best_match_index]: name = known_face_names[best_match_index] face_names.append(name) process_this_frame = not process_this_frame for (top, right, bottom, left), name in zip(face_locations, face_names): top *= 4 right *= 4 bottom *= 4 left *= 4 cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2) cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED) font = cv2.FONT_HERSHEY_DUPLEX cv2.putText(frame, name, (left + 6, bottom - 6), font, 0.8, (255, 255, 255), 1) cv2.imshow('Video', frame) if cv2.waitKey(1) & 0xFF == ord('q'): break video_capture.release() cv2.destroyAllWindows() if __name__ == "__main__": dataset_folder = "../dataset/" known_face_encodings, known_face_names = create_known_face_encodings(dataset_folder) recognize_faces_in_video(known_face_encodings, known_face_names)
四、实现考勤系统
在 src
文件夹下创建一个名为 attendance.py
的文件,并添加以下代码:
import os import datetime import csv from face_recognition import create_known_face_encodings, recognize_faces_in_video def save_attendance(name): attendance_file = "../attendance/attendance.csv" now = datetime.datetime.now() date_string = now.strftime("%Y-%m-%d") time_string = now.strftime("%H:%M:%S") if not os.path.exists(attendance_file): with open(attendance_file, "w", newline="") as csvfile: csv_writer = csv.writer(csvfile) csv_writer.writerow(["Name", "Date", "Time"]) with open(attendance_file, "r+", newline="") as csvfile: csv_reader = csv.reader(csvfile) rows = [row for row in csv_reader] for row in rows: if row[0] == name and row[1] == date_string: return csv_writer = csv.writer(csvfile) csv_writer.writerow([name, date_string, time_string]) def custom_recognize_faces_in_video(known_face_encodings, known_face_names): video_capture = cv2.VideoCapture(0) face_locations = [] face_encodings = [] face_names = [] process_this_frame = True while True: ret, frame = video_capture.read() small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25) rgb_small_frame = small_frame[:, :, ::-1] if process_this_frame: face_locations = face_recognition.face_locations(rgb_small_frame) face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations) face_names = [] for face_encoding in face_encodings: matches = face_recognition.compare_faces(known_face_encodings, face_encoding) name = "Unknown" face_distances = face_recognition.face_distance(known_face_encodings, face_encoding) best_match_index = np.argmin(face_distances) if matches[best_match_index]: name = known_face_names[best_match_index] save_attendance(name) face_names.append(name) process_this_frame = not process_this_frame for (top, right, bottom, left), name in zip(face_locations, face_names): top *= 4 right *= 4 bottom *= 4 left *= 4 cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2) cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED) font = cv2.FONT_HERSHEY_DUPLEX cv2.putText(frame, name, (left + 6, bottom - 6), font, 0.8, (255, 255, 255), 1) cv2.imshow('Video', frame) if cv2.waitKey(1) & 0xFF == ord('q'): break video_capture.release() cv2.destroyAllWindows() if __name__ == "__main__": dataset_folder = "../dataset/" known_face_encodings, known_face_names = create_known_face_encodings(dataset_folder) custom_recognize_faces_in_video(known_face_encodings, known_face_names)
五、运行考勤系统
运行 attendance.py
文件,系统将开始识别并记录考勤信息。考勤记录将保存在 attendance.csv
文件中。
python src/attendance.py
现在,您的基于人脸识别的考勤系统已经实现。请注意,这是一个基本示例,您可能需要根据实际需求对其进行优化和扩展。例如,您可以考虑添加更多的人脸识别算法、考勤规则等。
到此这篇关于python+OpenCV人脸识别考勤系统实现的详细代码的文章就介绍到这了,更多相关python OpenCV人脸识别考勤系统内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
相关文章
Python机器学习算法库scikit-learn学习之决策树实现方法详解
这篇文章主要介绍了Python机器学习算法库scikit-learn学习之决策树实现方法,结合实例形式分析了决策树算法的原理及使用sklearn库实现决策树的相关操作技巧,需要的朋友可以参考下2019-07-07
最新评论