python中numpy 数组过滤详解

 更新时间:2023年06月30日 08:14:01   作者:wang_yb  
这篇文章主要介绍了python中numpy 数组过滤详解的相关资料,需要的朋友可以参考下

numpy中,数组可以看作是一系列数值的有序集合,可以通过下标访问其中的元素。
处理数组的过程中,经常需要用到数组过滤功能。

过滤功能可以在处理数据时非常有用,因为它可以使数据更加干净和可读性更强。
例如,在进行数据分析时,通常需要去除异常值,过滤掉不必要的元素可以使数据更加易于分析和处理。

numpy本身提供了很多针对特定要求的过滤函数,
不过本篇只介绍最基本的过滤方式,通过最基本的过滤方式来揭示其过滤的原理。

1. 比较

比较是过滤的前提,因为通过比较才能确定过滤的条件。

1.1. 数组和单个数字

import numpy as np

arr = np.random.randint(0, 10, (3, 3))
print(arr)
#运行结果
[[4 1 4]
 [7 6 1]
 [8 9 5]]

print(arr > 5)
#运行结果
[[False False False]
 [ True  True False]
 [ True  True False]]

数组和单个数字比较,也满足上一篇介绍的广播原则,也就是数组arr的每个元素都和数字5进行了比较。

比较的结果是和arr相同结构的数组,数组中的元素是bool值。
满足比较条件是True不满足比较条件的是False

1.2. 数组和数组

除了和单个数字比较之外,数组之间也是可以比较的。

arr1 = np.random.randint(0, 10, (3, 3))
print(arr1)
#运行结果
[[9 7 3]
 [2 8 5]
 [2 2 3]]

arr2 = np.random.randint(0, 10, (3, 3))
print(arr2)
#运行结果
[[1 6 0]
 [0 1 8]
 [9 0 5]]

print(arr1 > arr2)
#运行结果
[[ True  True  True]
 [ True  True False]
 [False  True False]]

数组之间的比较就是相同位置的元素之间比较,如果两个数组的结构不一样,会按照上一篇介绍的广播计算方式来扩充数组。
比如:

arr1 = np.random.randint(0, 10, (3, 3))
print(arr1)
#运行结果
[[9 6 0]
 [1 4 9]
 [1 1 4]]

arr2 = np.random.randint(0, 10, (3, 1))
print(arr2)
#运行结果
[[1]
 [0]
 [9]]

print(arr1 > arr2)
#运行结果
[[ True  True False]
 [ True  True  True]
 [False False False]]

上面的数组arr2,按广播规则被扩充成:

[[1 1 1]
[0 0 0]
[9 9 9]]

2. 掩码

所谓掩码,其实就是上面的各个示例中的比较结果。
也就是只包含bool值的数组,比如:

[[ True True False]
[ True True True]
[False False False]]

我们就是根据这个掩码,来过滤出数组中的True 或者 False 位置的元素。

3. 过滤

过滤就是根据掩码,选择出符合条件的元素。

3.1. 单条件过滤

arr = np.random.randint(0, 10, (3, 3))
print(arr)
#运行结果
[[8 4 0]
 [2 2 9]
 [9 5 9]]

print(arr[arr > 5])
#运行结果
[8 9 9 9]

最后得到的是arr中值大于5的元素数组。
其中 arr > 5 的结果就是上一节提到的掩码,最后过滤出的元素就是根据这个掩码得到的。

除了跟单独的数字比较,也可以和数组比较:

arr1 = np.random.randint(0, 10, (3, 3))
print(arr1)
#运行结果
[[3 4 7]
 [4 6 2]
 [7 2 1]]

arr2 = np.random.randint(0, 10, (3, 3))
print(arr2)
#运行结果
[[2 3 1]
 [7 7 7]
 [1 6 4]]

print(arr1[arr1 > arr2])
#运行结果
[3 4 7 7]

3.2. 多条件过滤

多条件过滤使用 & 和 | 来连接不同的条件。

arr1 = np.random.randint(0, 10, (3, 3))
print(arr1)
#运行结果
[[1 0 5]
 [7 4 9]
 [8 5 4]]

arr2 = np.random.randint(0, 10, (3, 3))
print(arr2)
#运行结果
[[6 4 1]
 [0 1 1]
 [8 5 8]]

print(arr1[(arr1 > 5) & (arr1 > arr2)])
#运行结果
[7 9]

过滤arr1大于5** 并且 **对应位置比arr2大的元素。

arr1 = np.random.randint(0, 10, (3, 3))
print(arr1)
#运行结果
[[1 0 5]
 [7 4 9]
 [8 5 4]]

arr2 = np.random.randint(0, 10, (3, 3))
print(arr2)
#运行结果
[[6 4 1]
 [0 1 1]
 [8 5 8]]

print(arr1[(arr1 > 5) | (arr1 > arr2)])
#运行结果
[5 7 4 9 8]

过滤arr1大于5** 或者 **对应位置比arr2大的元素。

4. 总结回顾

本篇主要介绍了过滤的基本原理,首先从比较开始,比较的结果是掩码,最后通过掩码过滤数组。

到此这篇关于python中numpy 数组过滤详解的文章就介绍到这了,更多相关numpy 数组过滤内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Pytorch中的广播机制详解(Broadcast)

    Pytorch中的广播机制详解(Broadcast)

    这篇文章主要介绍了Pytorch中的广播机制详解(Broadcast),具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-01-01
  • 详解Python3.1版本带来的核心变化

    详解Python3.1版本带来的核心变化

    这篇文章主要介绍了详解Python3.1版本带来的核心变化,Python3.1的版本升级在3.0的基础上带来了更多影响以后版本的变化,本文分析了其中一些常用功能的改变,如Maketrans函数等,需要的朋友可以参考下
    2015-04-04
  • 修改 CentOS 6.x 上默认Python的方法

    修改 CentOS 6.x 上默认Python的方法

    这篇文章主要介绍了修改 CentOS 6.x 上默认Python的方法,本文给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
    2019-09-09
  • Python ArcPy实现批量对大量遥感影像相减做差

    Python ArcPy实现批量对大量遥感影像相减做差

    这篇文章主要为大家介绍了如何基于Python中ArcPy模块实现对大量栅格遥感影像文件批量进行相减做差,文中的示例代码讲解详细,感兴趣的可以了解一下
    2023-06-06
  • python--pip--安装超时的解决方案

    python--pip--安装超时的解决方案

    这篇文章主要介绍了python--pip--安装超时的解决方案,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-02-02
  • 对python中的高效迭代器函数详解

    对python中的高效迭代器函数详解

    今天小编就为大家分享一篇对python中的高效迭代器函数详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-10-10
  • Python 内置函数速查表一览

    Python 内置函数速查表一览

    这篇文章主要介绍了Python 内置函数速查表,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2021-06-06
  • python小程序之4名牌手洗牌发牌问题解析

    python小程序之4名牌手洗牌发牌问题解析

    这篇文章主要为大家详细介绍了python小程序之4名牌手洗牌发牌问题,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2020-05-05
  • python 表达式和语句及for、while循环练习实例

    python 表达式和语句及for、while循环练习实例

    下面小编就为大家带来一篇python 表达式和语句及for、while循环练习实例。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-07-07
  • 分享一下Python数据分析常用的8款工具

    分享一下Python数据分析常用的8款工具

    Python是数据处理常用工具,可以处理数量级从几K至几T不等的数据,具有较高的开发效率和可维护性,还具有较强的通用性和跨平台性,这里就为大家分享几个不错的数据分析工具,需要的朋友可以参考下
    2018-04-04

最新评论