Python图像处理之Hough圆形检测
hough检测原理
点击图像处理之Hough变换检测直线查看
下面直接描述检测圆形的方法
基于Hough变换的圆形检测方法
对于一个半径为r,圆心为(a,b)的圆,我们将其表示为:
(x−a)2+(y−b)2=r2
此时 x=[x,y]^T,a=[a,b,r]^T,其参数空间为三维。显然,图像空间上的一点 (x,y),在参数空间中对应着一个圆锥,如下图所示。
而图像空间的一个圆就对应着这一簇圆锥相交的一个点,这个特定点在参数空间的三维参数一定,就表示一定半径一定圆心坐标的图像空间的那个圆。
上述方法是经典的Hough圆检测方法的原理,它具有精度高,抗干扰能力强等优点,但由于该方法的参数空间为三维,要在三维空间上进行证据累计的话,需要的时间和空间都是庞大的,在实际应用中不适用。为加快Hough变换检测圆的速度,学者们进行了大量研究,也出现了很多改进的Hough变换检测圆的方法。如利用图像梯度信息的Hough变换,对圆的标准方程对x求导得到下式:
从上式看出,此时的参数空间从半径r,圆心(a,b)三维,变成了只有圆心(a,b)的二维空间,利用这种方法检测圆其计算量明显减少了。但这种改进的Hough变换检测圆的方法其检测精度并不高,原因在于,此种方法利用了边界斜率。从本质上讲,边界斜率其实是用曲线在某一点的弦的斜率来代替的,这种情况下,要保证不存在误差,只有在弦长为零的情况。但在数字图像中,曲线的表现形式是离散的,其在某一点处的斜率指的是此点右向n步斜率或是左向n步斜率。如果弦长过小了,斜率的量化误差就会增大。这种方法比较适用于干扰较少的完整圆形目标。
主要代码
def AHTforCircles(edge,center_threhold_factor = None,score_threhold = None,min_center_dist = None,minRad = None,maxRad = None,center_axis_scale = None,radius_scale = None,halfWindow = None,max_circle_num = None): if center_threhold_factor == None: center_threhold_factor = 10.0 if score_threhold == None: score_threhold = 15.0 if min_center_dist == None: min_center_dist = 80.0 if minRad == None: minRad = 0.0 if maxRad == None: maxRad = 1e7*1.0 if center_axis_scale == None: center_axis_scale = 1.0 if radius_scale == None: radius_scale = 1.0 if halfWindow == None: halfWindow = 2 if max_circle_num == None: max_circle_num = 6 min_center_dist_square = min_center_dist**2 sobel_kernel_y = np.array([[-1.0, -2.0, -1.0], [0.0, 0.0, 0.0], [1.0, 2.0, 1.0]]) sobel_kernel_x = np.array([[-1.0, 0.0, 1.0], [-2.0, 0.0, 2.0], [-1.0, 0.0, 1.0]]) edge_x = convolve(sobel_kernel_x,edge,[1,1,1,1],[1,1]) edge_y = convolve(sobel_kernel_y,edge,[1,1,1,1],[1,1]) center_accumulator = np.zeros((int(np.ceil(center_axis_scale*edge.shape[0])),int(np.ceil(center_axis_scale*edge.shape[1])))) k = np.array([[r for c in range(center_accumulator.shape[1])] for r in range(center_accumulator.shape[0])]) l = np.array([[c for c in range(center_accumulator.shape[1])] for r in range(center_accumulator.shape[0])]) minRad_square = minRad**2 maxRad_square = maxRad**2 points = [[],[]] edge_x_pad = np.pad(edge_x,((1,1),(1,1)),'constant') edge_y_pad = np.pad(edge_y,((1,1),(1,1)),'constant') Gaussian_filter_3 = 1.0 / 16 * np.array([(1.0, 2.0, 1.0), (2.0, 4.0, 2.0), (1.0, 2.0, 1.0)]) for i in range(edge.shape[0]): for j in range(edge.shape[1]): if not edge[i,j] == 0: dx_neibor = edge_x_pad[i:i+3,j:j+3] dy_neibor = edge_y_pad[i:i+3,j:j+3] dx = (dx_neibor*Gaussian_filter_3).sum() dy = (dy_neibor*Gaussian_filter_3).sum() if not (dx == 0 and dy == 0): t1 = (k/center_axis_scale-i) t2 = (l/center_axis_scale-j) t3 = t1**2 + t2**2 temp = (t3 > minRad_square)&(t3 < maxRad_square)&(np.abs(dx*t1-dy*t2) < 1e-4) center_accumulator[temp] += 1 points[0].append(i) points[1].append(j) M = center_accumulator.mean() for i in range(center_accumulator.shape[0]): for j in range(center_accumulator.shape[1]): neibor = \ center_accumulator[max(0, i - halfWindow + 1):min(i + halfWindow, center_accumulator.shape[0]), max(0, j - halfWindow + 1):min(j + halfWindow, center_accumulator.shape[1])] if not (center_accumulator[i,j] >= neibor).all(): center_accumulator[i,j] = 0 # 非极大值抑制 plt.imshow(center_accumulator,cmap='gray') plt.axis('off') plt.show() center_threshold = M * center_threhold_factor possible_centers = np.array(np.where(center_accumulator > center_threshold)) # 阈值化 sort_centers = [] for i in range(possible_centers.shape[1]): sort_centers.append([]) sort_centers[-1].append(possible_centers[0,i]) sort_centers[-1].append(possible_centers[1,i]) sort_centers[-1].append(center_accumulator[sort_centers[-1][0],sort_centers[-1][1]]) sort_centers.sort(key=lambda x:x[2],reverse=True) centers = [[],[],[]] points = np.array(points) for i in range(len(sort_centers)): radius_accumulator = np.zeros( (int(np.ceil(radius_scale * min(maxRad, np.sqrt(edge.shape[0] ** 2 + edge.shape[1] ** 2)) + 1))),dtype=np.float32) if not len(centers[0]) < max_circle_num: break iscenter = True for j in range(len(centers[0])): d1 = sort_centers[i][0]/center_axis_scale - centers[0][j] d2 = sort_centers[i][1]/center_axis_scale - centers[1][j] if d1**2 + d2**2 < min_center_dist_square: iscenter = False break if not iscenter: continue temp = np.sqrt((points[0,:] - sort_centers[i][0] / center_axis_scale) ** 2 + (points[1,:] - sort_centers[i][1] / center_axis_scale) ** 2) temp2 = (temp > minRad) & (temp < maxRad) temp = (np.round(radius_scale * temp)).astype(np.int32) for j in range(temp.shape[0]): if temp2[j]: radius_accumulator[temp[j]] += 1 for j in range(radius_accumulator.shape[0]): if j == 0 or j == 1: continue if not radius_accumulator[j] == 0: radius_accumulator[j] = radius_accumulator[j]*radius_scale/np.log(j) #radius_accumulator[j]*radius_scale/j score_i = radius_accumulator.argmax(axis=-1) if radius_accumulator[score_i] < score_threhold: iscenter = False if iscenter: centers[0].append(sort_centers[i][0]/center_axis_scale) centers[1].append(sort_centers[i][1]/center_axis_scale) centers[2].append(score_i/radius_scale) centers = np.array(centers) centers = centers.astype(np.float64) return centers
代码效果
到此这篇关于Python图像处理之Hough圆形检测的文章就介绍到这了,更多相关Python圆形检测内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
相关文章
python中的selenium实现自动向下滚动页面并指定最大滑动距离
这篇文章主要介绍了python中的selenium实现自动向下滚动页面并指定最大滑动距离,下文有关selenium的资料介绍有一定的参考价值,需要的小伙伴可以参考一下2022-02-02利用PyQt5+Matplotlib 绘制静态/动态图的实现代码
这篇文章主要介绍了利用PyQt5+Matplotlib 绘制静态/动态图的实现代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧2020-07-07
最新评论