解读残差网络(Residual Network),残差连接(skip-connect)

 更新时间:2023年08月03日 09:16:59   作者:HealthScience  
这篇文章主要介绍了残差网络(Residual Network),残差连接(skip-connect),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教

在VGG中,卷积网络达到了19层,在GoogLeNet中,网络史无前例的达到了22层。

那么,网络的精度会随着网络的层数增多而增多吗?

在深度学习中,网络层数增多一般会伴着下面几个问题

  • 计算资源的消耗
  • 模型容易过拟合
  • 梯度消失/梯度爆炸问题的产生

问题1可以通过GPU集群来解决,对于一个企业资源并不是很大的问题;问题2的过拟合通过采集海量数据,并配合Dropout正则化等方法也可以有效避免;问题3通过Batch Normalization也可以避免。貌似我们只要无脑的增加网络的层数,我们就能从此获益,但实验数据给了我们当头一棒。

作者发现,随着网络层数的增加,网络发生了退化(degradation)的现象:随着网络层数的增多,训练集loss逐渐下降,然后趋于饱和,当你再增加网络深度的话,训练集loss反而会增大。注意这并不是过拟合,因为在过拟合中训练loss是一直减小的。

当网络退化时,浅层网络能够达到比深层网络更好的训练效果,这时如果我们把低层的特征传到高层,那么效果应该至少不比浅层的网络效果差,或者说如果一个VGG-100网络在第98层使用的是和VGG-16第14层一模一样的特征,那么VGG-100的效果应该会和VGG-16的效果相同。所以,我们可以在VGG-100的98层和14层之间添加一条直接映射(Identity Mapping)来达到此效果。

从信息论的角度讲,由于DPI(数据处理不等式)的存在,在前向传输的过程中,随着层数的加深,Feature Map包含的图像信息会逐层减少,而ResNet的直接映射的加入,保证了 l+1 层的网络一定比 l 层包含更多的图像信息。基于这种使用直接映射来连接网络不同层直接的思想,残差网络应运而生。

残差网络

1.残差块

残差网络是由一系列残差块组成的(图1)。

一个残差块可以用表示为:

2.残差网络

残差网络的搭建分为两步:

使用VGG公式搭建Plain VGG网络在Plain VGG的卷积网络之间插入Identity Mapping,注意需要升维或者降维的时候加入 1×1 卷积。

在实现过程中,一般是直接stack残差块的方式。

3.为什么叫残差网络

一、背景

1.梯度消失问题

我们发现很深的网络层,由于参数初始化一般更靠近0,这样在训练的过程中更新浅层网络的参数时,很容易随着网络的深入而导致梯度消失,浅层的参数无法更新。

解释

可以看到,假设现在需要更新b1,w2,w3,w4参数因为随机初始化偏向于0,通过链式求导我们会发现,w1w2w3相乘会得到更加接近于0的数,那么所求的这个b1的梯度就接近于0,也就产生了梯度消失的现象。

2.网络退化问题

举个例子,假设已经有了一个最优化的网络结构,是18层。当我们设计网络结构的时候,我们并不知道具体多少层次的网络是最优化的网络结构,假设设计了34层网络结构。

那么多出来的16层其实是冗余的,我们希望训练网络的过程中,模型能够自己训练这五层为恒等映射,也就是经过这层时的输入与输出完全一样。

但是往往模型很难将这16层恒等映射的参数学习正确,那么就一定会不比最优化的18层网络结构性能好,这就是随着网络深度增加,模型会产生退化现象

它不是由过拟合产生的,而是由冗余的网络层学习了不是恒等映射的参数造成的。

二、ResNets  残差网络

ResNet使用了一个新的思想,ResNet的思想是假设我们涉及一个网络层,存在最优化的网络层次,那么往往我们设计的深层次网络是有很多网络层为冗余层的。

那么我们希望这些冗余层能够完成恒等映射,保证经过该恒等层的输入和输出完全相同。

具体哪些层是恒等层,这个会有网络训练的时候自己判断出来。

残差网络有什么好处呢?

显而易见:因为增加了 x 项,那么该网络求 x 的偏导的时候,多了一项常数 1(对x的求导为1),所以反向传播过程,梯度连乘,也不会造成梯度消失。

可以看到X是这一层残差块的输入,也称作F(x)为残差,x为输入值,F(X)是经过第一层线性变化并激活后的输出,该图表示在残差网络中,第二层进行线性变化之后激活之前,F(x)加入了这一层输入值X,然后再进行激活后输出。在第二层输出值激活前加入X,这条路径称作shortcut连接。

三、网络架构

1.普通网络(Plain Network)

2.残差网络

 把它变成ResNet的方法是加上所有跳跃连接,每两层增加一个捷径,构成一个残差块。如图所示,5个残差块连接在一起构成一个残差网络。

3.对比分析

如果我们使用标准优化算法训练一个普通网络,比如说梯度下降法,或者其它热门的优化算法。

如果没有残差,没有这些捷径或者跳跃连接,凭经验你会发现随着网络深度的加深,训练错误会先减少,然后增多。而理论上,随着网络深度的加深,应该训练得越来越好才对。也就是说,理论上网络深度越深越好。

但实际上,如果没有残差网络,对于一个普通网络来说,深度越深意味着用优化算法越难训练。实际上,随着网络深度的加深,训练错误会越来越多

但有了ResNets就不一样了,即使网络再深,训练的表现却不错,比如说训练误差减少,就算是训练深达100层的网络也不例外

有人甚至在1000多层的神经网络中做过实验,这样就让我们在训练更深网络的同时,又能保证良好的性能。

也许从另外一个角度来看,随着网络越深,网络连接会变得臃肿,但是ResNet确实在训练深度网络方面非常有效。

四、解决问题

1.为什么可以解决梯度消失?

ResNet最终更新某一个节点的参数时,由于h(x)=F(x)+x,使得链式求导后的结果如图所示,不管括号内右边部分的求导参数有多小,因为左边的1的存在,并且将原来的链式求导中的连乘变成了连加状态,都能保证该节点参数更新不会发生梯度消失或梯度爆炸现象。

2.为什么可以解决网络退化问题?

我们发现,假设该层是冗余的,在引入ResNet之前,我们想让该层学习到的参数能够满足h(x)=x,即输入是x,经过该冗余层后,输出仍然为x。

但是可以看见,要想学习h(x)=x恒等映射时的这层参数时比较困难的。ResNet想到避免去学习该层恒等映射的参数,使用了如上图的结构,让h(x)=F(x)+x;这里的F(x)我们称作残差项,我们发现,要想让该冗余层能够恒等映射,我们只需要学习F(x)=0。

学习F(x)=0比学习h(x)=x要简单,因为一般每层网络中的参数初始化偏向于0,这样在相比于更新该网络层的参数来学习h(x)=x,该冗余层学习F(x)=0的更新参数能够更快收敛,如图所示:

假设该曾网络只经过线性变换,没有bias也没有激活函数。

我们发现因为随机初始化权重一般偏向于0,那么经过该网络的输出值为[0.6 0.6],很明显会更接近与[0 0],而不是[2 1],相比与学习h(x)=x,模型要更快到学习F(x)=0。并且ReLU能够将负数激活为0,过滤了负数的线性变化,也能够更快的使得F(x)=0。

这样当网络自己决定哪些网络层为冗余层时,使用ResNet的网络很大程度上解决了学习恒等映射的问题,用学习残差F(x)=0更新该冗余层的参数来代替学习h(x)=x更新冗余层的参数。

这样当网络自行决定了哪些层为冗余层后,通过学习残差F(x)=0来让该层网络恒等映射上一层的输入,使得有了这些冗余层的网络效果与没有这些冗余层的网络效果相同,这样很大程度上解决了网络的退化问题

总结

以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • python实现在列表中查找某个元素的下标示例

    python实现在列表中查找某个元素的下标示例

    这篇文章主要介绍了python实现在列表中查找某个元素的下标示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-11-11
  • python opencv实现灰度图和彩色图的互相转换

    python opencv实现灰度图和彩色图的互相转换

    这篇文章主要给大家介绍了关于python opencv实现灰度图和彩色图的互相转换,文中通过实例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2022-01-01
  • 使用python-pptx操作PPT的示例详解

    使用python-pptx操作PPT的示例详解

    python对PPT演示文档读写,是通过第三方库python-pptx实现的,python-pptx是用于创建和更新 PowerPoint文件的 Python 库。本文主要介绍了python-pptx操作PPT的相关示例,希望对大家有所帮助
    2023-01-01
  • django 2.2和mysql使用的常见问题

    django 2.2和mysql使用的常见问题

    这篇文章主要介绍了django 2.2和mysql使用的常见问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-07-07
  • Python解决鸡兔同笼问题的方法

    Python解决鸡兔同笼问题的方法

    这篇文章主要介绍了Python解决鸡兔同笼问题的方法,分析了鸡兔同笼问题的原理与解决思路,并给出了Python实现的代码,非常具有参考借鉴价值,需要的朋友可以参考下
    2014-12-12
  • Python脚本暴力破解栅栏密码

    Python脚本暴力破解栅栏密码

    在渗透测试当中,免不了要进行密码破解。本文通过好几种方法给大家介绍python密码破解,有通用脚本,FTP暴力破解脚本,SSH暴力破解,TELNET密码暴力破解,感兴趣的朋友一起学习吧
    2015-10-10
  • 在Windows中设置Python环境变量的实例讲解

    在Windows中设置Python环境变量的实例讲解

    下面小编就为大家分享一篇在Windows中设置Python环境变量的实例讲解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-04-04
  • Python单链表简单实现代码

    Python单链表简单实现代码

    这篇文章主要介绍了Python单链表简单实现代码,结合实例形式分析了Python单链表的具体定义与功能实现技巧,需要的朋友可以参考下
    2016-04-04
  • 解决python3运行selenium下HTMLTestRunner报错的问题

    解决python3运行selenium下HTMLTestRunner报错的问题

    今天小编就为大家分享一篇解决python3运行selenium下HTMLTestRunner报错的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-12-12
  • pytorch关于Tensor的数据类型说明

    pytorch关于Tensor的数据类型说明

    这篇文章主要介绍了pytorch关于Tensor的数据类型说明,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-07-07

最新评论