详解opencv rtsp 硬件解码

 更新时间:2023年08月04日 15:59:56   作者:qianbo_insist  
这篇文章主要介绍了opencv rtsp硬件解码的相关知识,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

讨论使用opencv的reader

硬件解码的方案有太多种,如果使用ffmpeg硬件解码是最方便的,不方便的是把解码过后的GPU 拉到 CPU 上,再使用opencv的Mat 从cpu 上上载到gpu上,是不是多了两个过程,应该是直接从GPU mat 直接去处理, 最后一步再从GPU mat 上下载到cpu,render显示。

GPU 硬件解码是nv12 格式,我们为了显示和cpu使用直接转成了RGB或者BGR, 使用opencv再映射封装,最后又上载到cuda,这个过程很耗时间,而且不是必要的。

windows下使用cuda

经过实验,cv::cudacodec::createVideoReader 是可以拉取rtsp 流的,官方编译的可以读取rtsp,但是在文件流上出了问题,而且还有一个bug,就是在显示的时候,必须关闭一次窗口,才能显示后续的帧,而且还有一点,就是注意这个窗口必须是opengl 窗口,而且要打开这个窗口,而且在编译支持cuda的opencv时必须把opengl 勾选上,所以达不到产品化的要求,以下是测试代码:

#include <iostream>
#include "opencv2/opencv_modules.hpp"
#if defined(HAVE_OPENCV_CUDACODEC)
#include <string>
#include <vector>
#include <algorithm>
#include <numeric>
#include <opencv2/opencv.hpp>
#include <opencv2/core.hpp>
#include <opencv2/core/opengl.hpp>
#include <opencv2/cudacodec.hpp>
#include <opencv2/highgui.hpp>
#if _DEBUG
#pragma comment(lib,"opencv_world460.lib")
#else 
#pragma comment(lib,"opencv_world460.lib")
#endif
int main()
{
    cv::cuda::printCudaDeviceInfo(cv::cuda::getDevice());
    int count = cv::cuda::getCudaEnabledDeviceCount();
    printf("GPU Device Count : %d \n", count);
    const std::string fname("rtsp://127.0.0.1/101-640.mkv"); //视频文件
   // const std::string fname("test_222.mp4"); //视频文件
   // cv::namedWindow("CPU", cv::WINDOW_NORMAL);
    cv::namedWindow("GPU", cv::WINDOW_OPENGL);
    cv::cuda::setGlDevice();
    cv::Mat frame;
    cv::VideoCapture reader(fname);
    cv::cuda::GpuMat d_frame;
    cv::Ptr<cv::cudacodec::VideoReader> d_reader = cv::cudacodec::createVideoReader(fname);
    cv::TickMeter tm;
    std::vector<double> cpu_times;
    std::vector<double> gpu_times;
    int gpu_frame_count = 0, cpu_frame_count = 0;
#if 0
    for (;;)
    {
        tm.reset(); tm.start();
        if (!reader.read(frame))
            break;
        tm.stop();
        cpu_times.push_back(tm.getTimeMilli());
        cpu_frame_count++;
        cv::imshow("CPU", frame);
        if (cv::waitKey(1) > 0)
            break;
    }
#endif
    for (;;)
    {
        tm.reset();
        tm.start();
        if (!d_reader->nextFrame(d_frame))
            break;
        tm.stop();
        //d_frame.step = d_frame.cols * d_frame.channels();
        //cv::cuda::GpuMat gpuMat_Temp = d_frame.clone();
        gpu_times.push_back(tm.getTimeMilli());
        gpu_frame_count++;
        if (gpu_frame_count > 2)
        {
            cv::Mat test;
            d_frame.download(test);
            d_frame.release();
            // cv::cvtColor(test, test, cv::COLOR_BGRA2BGR);
             //cv::imwrite("./test1.jpg", test);
            cv::imshow("GPU", test);
        }
        if (cv::waitKey(1) > 0)
            break;
    }
    if (!cpu_times.empty() && !gpu_times.empty())
    {
        std::cout << std::endl << "Results:" << std::endl;
        std::sort(cpu_times.begin(), cpu_times.end());
        std::sort(gpu_times.begin(), gpu_times.end());
        double cpu_avg = std::accumulate(cpu_times.begin(), cpu_times.end(), 0.0) / cpu_times.size();
        double gpu_avg = std::accumulate(gpu_times.begin(), gpu_times.end(), 0.0) / gpu_times.size();
        std::cout << "CPU : Avg : " << cpu_avg << " ms FPS : " << 1000.0 / cpu_avg << " Frames " << cpu_frame_count << std::endl;
        std::cout << "GPU : Avg : " << gpu_avg << " ms FPS : " << 1000.0 / gpu_avg << " Frames " << gpu_frame_count << std::endl;
    }
    return 0;
}

经过release版本的测试,cuda硬件解码比cpu慢很多,我cpu是intel 13代 13700,速度很快,gpu是3060ti, 实际测试就是如此。说明在windows下实际类里面解码的时候在cpu和gpu上转换的时间太多

综上所述,必须使用更为简单的方法,放弃windows上的做法,放到linux上, ffmpeg硬件解码 然后映射到gpu mat上,至于解码ffmpeg 可以看我的其他文章,至于ffmpeg 编解码 nvidia 上官网也是有介绍的:
编译ffmpeg
    使用python和linux,使用python的作用是取消c++ 到python之间的内存共享,在windows上编译pynvcodec 会遇到各种问题,建议在linux 编译 pynvcodec,为什么不使用ffmpeg直接解码,因为:我们使用ffmpeg解码得到的YUV格式,我们只能在CPU下转化到RGB的色彩空间,缺少在GPU上进行全部转化的流程,因此我们使用vpf 来进行python上的视频处理,同时结束时可以直接转化成pytorch的张量来处理。

    VideoProcessingFramework(VPF)是NVIDIA开源的适用于Python的视频处理框架,可用于硬件加速条件下的视频编解码等处理类任务。同时对于Pytorch比较友好,能够将解析出来的图像数据直接转化成Tensor()的格式。以下为例子:

import PyNvCodec as nvc
import PytorchNvCodec as pnvc  
   while True:
        # Read data.
        # Amount doesn't really matter, will be updated later on during decode.
        bits = proc.stdout.read(read_size)
        if not len(bits):
            print("Can't read data from pipe")
            break
        else:
            rt += len(bits)
        # Decode
        enc_packet = np.frombuffer(buffer=bits, dtype=np.uint8)
        pkt_data = nvc.PacketData()
        try:
            surf = nvdec.DecodeSurfaceFromPacket(enc_packet, pkt_data)    # 获取流的数据
            # Convert to planar RGB
            rgb_pln = to_rgb.run(surf)   # 转换到rgb_pln
            if rgb_pln.Empty():
                break
            # PROCESS YOUR TENSOR HERE.
            # THIS DUMMY PROCESSING JUST ADDS RANDOM ROTATION.
            src_tensor = surface_to_tensor(rgb_pln)  # 转化为Tensor(),数据存储在GPU中
            dst_tensor = T.RandomRotation(degrees=(-1, 1))(src_tensor)
            surface_rgb = tensor_to_surface(dst_tensor, gpu_id)
            # Convert back to NV12
            dst_surface = to_nv12.run(surface_rgb) # 再转换回码流
            if src_surface.Empty():
                break
        # Handle HW exceptions in simplest possible way by decoder respawn
        except nvc.HwResetException:
            nvdec = nvc.PyNvDecoder(w, h, f, c, g)
            continue

使用gstreamer

近来来opencv的下载是一个问题,动不动就下载出错,使用gstreamer 在windows下和ffmpeg 差不离,编译也比较麻烦,我们尽量在linux下编译

sudo apt-get update 
sudo apt-get install build-essential cmake git pkg-config 
sudo apt-get install libjpeg8-dev libtiff4-dev libjasper-dev libpng12-dev 
sudo apt-get install libgtk2.0-dev 
sudo apt-get install libavcodec-dev libavformat-dev libswscale-dev libv4l-dev 
sudo apt-get install libatlas-base-dev gfortran 
//在opencv里面安装gstreamer插件 
sudo apt-get install gstreamer1.0-tools gstreamer1.0-alsa gstreamer1.0-plugins-base gstreamer1.0-plugins-good gstreamer1.0-plugins-bad gstreamer1.0-plugins-ugly gstreamer1.0-libav 
sudo apt-get install libgstreamer1.0-dev libgstreamer-plugins-base1.0-dev libgstreamer-plugins-good1.0-dev libgstreamer-plugins-bad1.0-dev 
cd /home/opencv 
git clone https://github.com/opencv.git 
cd opencv 
git checkout 4.7.0 
cd /home/opcv 
nkdir build 
cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local -D CUDA_GENERATION=Kepler .. 
make -j4 
sudo make install
int main()
{
   // std::cout << cv::getBuildInformation() << std::endl;
    using std::chrono::steady_clock;
    typedef std::chrono::milliseconds milliseconds_type;
    const int interval = 15;
    std::stringstream ss;
    std::string rtsp_url = "rtsp://127.0.0.1/101-640.mkv";
    size_t latency = 200;
    size_t frame_width = 1920;
    size_t frame_height = 1080;
    size_t framerate = 15;
    ss << "rtspsrc location=" << rtsp_url << " latency=" << latency << " ! application/x-rtp, media=video, encoding-name=H264 "
        << "! rtph264depay ! video/x-h264, clock-rate=90000, width=" << frame_width << ", height=" << frame_height << ", framerate="
        << framerate << "/1 ! nvv4l2decoder ! video/x-raw(memory:NVMM), width=" << frame_width << ", height=" << frame_height
        << ", framerate=" << framerate << "/1 ! nvvideoconvert ! video/x-raw, format=BGRx ! videoconvert ! video/x-raw, format=BGR ! appsink";
    std::cout << ss.str() << std::endl;
    cv::VideoCapture cap = cv::VideoCapture(ss.str(), cv::CAP_GSTREAMER);
    if (!cap.isOpened())
    {
        std::cerr << "error to open camera." << std::endl;
        return -1;
    }
    std::cout << cv::getBuildInformation() << std::endl;
    cv::Mat frame;
    steady_clock::time_point start = steady_clock::now();
    size_t frame_idx = 0;
    while (1)
    {
        bool ret = cap.read(frame);
        if (ret)
        {
            // cv::imwrite("tmp.jpg", frame);
            ++frame_idx;
        }
        if (frame_idx % interval == 0)
        {
            steady_clock::time_point end = steady_clock::now();
            milliseconds_type span = std::chrono::duration_cast<milliseconds_type>(end - start);
            std::cout << "it took " << span.count() / frame_idx << " millisencods." << std::endl;
            start = end;
        }
    }
    return 0;
}

一点一点排除,在windows上很难复现很多代码,很多都是不稳当的做法,只能做做demo,完全产品化不了,我们目前稳定的做法,1 是使用live555 ,下拉 rtsp,ffmpeg 硬件解码,转成mat,转成gpumat,再转成mat。这个方案不断修改吧。等我更新。

到此这篇关于opencv rtsp 硬件解码的文章就介绍到这了,更多相关opencv rtsp 硬件解码内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • python实现人机对战的五子棋游戏

    python实现人机对战的五子棋游戏

    这篇文章主要为大家详细介绍了python实现人机对战的五子棋游戏,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2022-04-04
  • 在Python中使用mechanize模块模拟浏览器功能

    在Python中使用mechanize模块模拟浏览器功能

    这篇文章主要介绍了在Python中使用mechanize模块模拟浏览器功能,包括使用cookie和设置代理等功能的实现,需要的朋友可以参考下
    2015-05-05
  • Python闭包的使用方法

    Python闭包的使用方法

    这篇文章主要介绍了Python闭包的使用方法,当返回的内部函数使用了外部函数的变量就形成了闭包,下文更多相关内容需要的小伙伴可以参考一下
    2022-04-04
  • Python魔法方法功能与用法简介

    Python魔法方法功能与用法简介

    这篇文章主要介绍了Python魔法方法功能与用法,结合具体实例形式分析了Python面向对象程序设计中魔法方法的概念、功能、原理、用法及相关操作注意事项,需要的朋友可以参考下
    2019-04-04
  • Python lambda函数保姆级使用教程

    Python lambda函数保姆级使用教程

    本文和你一起探索Python中的lambda函数,让你以最短的时间明白这个函数的原理。也可以利用碎片化的时间巩固这个函数,让你在处理工作过程中更高效
    2022-06-06
  • 在python里面运用多继承方法详解

    在python里面运用多继承方法详解

    在本篇文章中小编给各位分享的是关于在python里面运用多继承方法以及知识点总结,有兴趣的朋友们可以学习下。
    2019-07-07
  • python PyAutoGUI 模拟鼠标键盘操作和截屏功能

    python PyAutoGUI 模拟鼠标键盘操作和截屏功能

    一款跨平台/无依赖的自动化测试工具,目测只能控制鼠标/键盘/获取屏幕尺寸/弹出消息框/截屏。这篇文章主要介绍了python PyAutoGUI 模拟鼠标键盘操作和截屏功能,需要的朋友可以参考下
    2019-08-08
  • Python callable()函数用法实例分析

    Python callable()函数用法实例分析

    这篇文章主要介绍了Python callable()函数用法,结合实例形式分析了Python callable()函数的功能、使用方法及相关操作注意事项,需要的朋友可以参考下
    2018-03-03
  • python多线程如何获取有序结果

    python多线程如何获取有序结果

    在Python中,多线程编程是一个常见需求,尤其是在处理I/O密集型任务时,然而,多线程环境下保持任务执行结果的顺序通常较为复杂,为了解决这一问题,可以通过封装一个功能来确保即使在多线程环境下,任务的执行结果也能按照一定的顺序进行收集和处理
    2024-09-09
  • eclipse创建python项目步骤详解

    eclipse创建python项目步骤详解

    在本篇内容里小编给大家分享了关于eclipse创建python项目的具体步骤和方法,需要的朋友们跟着学习下。
    2019-05-05

最新评论