Matplotlib实战之直方图绘制详解

 更新时间:2023年08月21日 14:03:41   作者:databook  
直方图,又称质量分布图,用于表示数据的分布情况,是一种常见的统计图表,这篇文章主要为大家详细介绍了如何使用Matplotlib绘制直方图,需要的可以参考下

直方图,又称质量分布图,用于表示数据的分布情况,是一种常见的统计图表。

一般用横轴表示数据区间,纵轴表示分布情况,柱子越高,则落在该区间的数量越大。

构建直方图时,首先首先就是对数据划分区间,通俗的说即是划定有几根柱子(比如,1980年~2020年的数据,每5年划分一个区间的话,共8个区间)。

接着,对落在每个区间的数值进行统计计算, 最后,绘制矩形,高度由每个区间的统计结果决定。

直方图柱状图看似相像,实则完全不同。

前者反映数据分布情况,后者则不具备此功能,只能对数值进行比较。

也就是说,柱状图是离散的因此柱子间有空隙;但直方图的数据是连续的数值变量,因此柱子间是没有空隙的。

1. 主要元素

直方图的主要元素包括:

  • 横轴:表示数据的取值范围或分组区间。
  • 纵轴:表示该区间内数据的频率或数量。
  • 柱状条高度:表示每个区间内数据的频率或数量,柱状条的高度代表该区间内数据的数量多少。
  • 柱状条面积:表示不同区间内数据的总和,有时候面积是无意义的,只看高度。

2. 适用的场景

直方图适用于以下分析场景:

  • 数据分布分析:直方图可以帮助我们了解数据的分布情况,包括数据的中心趋势、离散程度和偏斜程度等。通过观察直方图的形状,我们可以判断数据是正态分布、偏态分布还是有其他特殊的分布形式。
  • 异常检测:直方图可以帮助我们识别出数据中的异常情况。通过观察直方图中的离群点或异常值,我们可以发现数据中的异常情况,从而进行数据清洗和异常检测。
  • 数据预处理:直方图可以指导我们选择合适的数据预处理方法。通过观察直方图,我们可以了解数据的分布范围和形态,从而决定是否需要对数据进行归一化、标准化或对数变换等预处理操作。
  • 数据比较:直方图可以帮助我们比较不同数据集之间的差异。通过绘制多个直方图并进行对比,我们可以观察到不同数据集之间的分布差异,从而进行数据分析和解释。

3. 不适用的场景

直方图可能不适用于以下分析场景:

  • 时间序列分析:直方图通常用于表示数据的分布情况,而对于时间序列数据,直方图无法展示数据随时间变化的趋势和模式。
  • 数据关联分析:直方图无法直接展示数据之间的相关性或关联性。
  • 多维数据分析:直方图主要适用于一维数据的分析,无法直接展示多维数据的分布情况。
  • 数据模型拟合:直方图可以展示数据的分布情况,但无法直接拟合数据的概率分布或模型。
  • 数据聚类分析:直方图无法直接展示数据的聚类情况,无法将数据点分组或分类。

4. 分析实战

本次准备用直方图统计下某个年度我们进出口总额的分布情况。

4.1. 数据来源

这次选用国家统计局公开的对外经济贸易数据:databook.top/nation/A06

fp = "d:/share/A06050101.csv"
df = pd.read_csv(fp)
df

4.2. 数据清理

数据中有很多年份的数据为0,也就是有很多的缺失值。

所以,只选取了2021年亚洲各国的进出口总额数据来分析,

其中有2个数据在分析绘图前需要清理,一个是中国同亚洲其他国家(地区)进出口总额(万美元),与其他值差别很大,所以清理;另一个是中国同亚洲进出口总额(万美元),这是个汇总数据,也清理了。

data = df[(df["sj"] == 2021) & 
        (df["zb"] != "A060501011E") & 
        (df["zb"] != "A0605010101")].copy()
#原始数值太大,单位换成(亿美元)
data["value"] = data["value"] / 10000
data.head()

一共有48条数据,这是前5条。

4.3. 分析结果可视化

绘制直方图比较简单,核心是两个参数:

  • **x **参数:一个列表,也就是这次示例中就是各个亚洲国家的进出口总额
  • **bins **参数:设置数据分成几组,直方图会统计每个分组中的数据个数
plt.hist(data["value"].tolist(), bins=10)
plt.title("中国与亚洲各国进出口总额(亿美元) 分布")
plt.show()

上面绘图时,分了10个组。(可以试试调整分组个数,看看不同的图形效果)

从图中可以看出,2021年,亚洲各国与中国的进出口总额在 0~300(亿美元)左右的国家最多,有30多个;

还有2,3个国家与中国的进出口总额甚至超过了3500亿美元。

以上就是Matplotlib实战之直方图绘制详解的详细内容,更多关于Matplotlib直方图的资料请关注脚本之家其它相关文章!

相关文章

  • 从零学Python之入门(四)运算

    从零学Python之入门(四)运算

    最近2天,各种不顺利,还被一个油门当刹车的憨货给追尾了,所以本系列发的比较少,本文是系列的第四篇,讲述的是Python的运算
    2014-05-05
  • python实现nao机器人身体躯干和腿部动作操作

    python实现nao机器人身体躯干和腿部动作操作

    这篇文章主要为大家详细介绍了python实现nao机器人身体躯干和腿部动作操作,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2019-04-04
  • python解析json实例方法

    python解析json实例方法

    这篇文章主要介绍了python解析json数据的小实例,代码简单实用,大家参考使用吧
    2013-11-11
  • 使用python实现男神女神颜值打分系统(推荐)

    使用python实现男神女神颜值打分系统(推荐)

    这篇文章主要介绍了用python做一个男神女神颜值打分系统(程序分析见注释),需要的朋友可以参考下
    2019-10-10
  • Python中的asyncio代码详解

    Python中的asyncio代码详解

    asyncio 是用来编写 并发 代码的库,使用 async/await 语法。 asyncio 被用作多个提供高性能 Python 异步框架的基础,包括网络和网站服务,数据库连接库,分布式任务队列等等。这篇文章主要介绍了Python中的asyncio,需要的朋友可以参考下
    2019-06-06
  • Python中的Nonetype类型怎么判断

    Python中的Nonetype类型怎么判断

    这篇文章主要介绍了Python中的Nonetype类型怎么判断?具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2021-05-05
  • Pandas之DataFrame对象的列和索引之间的转化

    Pandas之DataFrame对象的列和索引之间的转化

    这篇文章主要介绍了Pandas之DataFrame对象的列和索引之间的转化,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-06-06
  • Python基于聚类算法实现密度聚类(DBSCAN)计算【测试可用】

    Python基于聚类算法实现密度聚类(DBSCAN)计算【测试可用】

    这篇文章主要介绍了Python基于聚类算法实现密度聚类(DBSCAN)计算,结合实例形式分析了聚类算法的相关概念、原理及使用聚类算法进行密度聚类计算的相关操作技巧,需要的朋友可以参考下
    2018-12-12
  • python批量生成本地ip地址的方法

    python批量生成本地ip地址的方法

    这篇文章主要介绍了python批量生成本地ip地址的方法,实例分析了Python实现生成本地IP地址并绑定到网卡上的技巧,具有一定参考借鉴价值,需要的朋友可以参考下
    2015-03-03
  • 浅谈Python线程的同步互斥与死锁

    浅谈Python线程的同步互斥与死锁

    这篇文章主要介绍了浅谈Python线程的同步互斥与死锁,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-03-03

最新评论