Pandas中迭代DataFrame行的方法总结
Python是进行数据分析的一种很好的语言,主要是因为以数据为中心的Python包的奇妙生态系统。Pandas就是其中之一,它使导入和分析数据变得更加容易。
1. 使用Dataframe的index属性
# import pandas package as pd import pandas as pd # Define a dictionary containing students data data = {'Name': ['Ankit', 'Amit', 'Aishwarya', 'Priyanka'], 'Age': [21, 19, 20, 18], 'Stream': ['Math', 'Commerce', 'Arts', 'Biology'], 'Percentage': [88, 92, 95, 70]} # Convert the dictionary into DataFrame df = pd.DataFrame(data, columns=['Name', 'Age', 'Stream', 'Percentage']) print("Given Dataframe :\n", df) print("\nIterating over rows using index attribute :\n") # iterate through each row and select # 'Name' and 'Stream' column respectively. for ind in df.index: print(df['Name'][ind], df['Stream'][ind])
输出
Given Dataframe :
Name Age Stream Percentage
0 Ankit 21 Math 88
1 Amit 19 Commerce 92
2 Aishwarya 20 Arts 95
3 Priyanka 18 Biology 70
Iterating over rows using index attribute :
Ankit Math
Amit Commerce
Aishwarya Arts
Priyanka Biology
2. 使用DataFrame的loc
# import pandas package as pd import pandas as pd # Define a dictionary containing students data data = {'Name': ['Ankit', 'Amit', 'Aishwarya', 'Priyanka'], 'Age': [21, 19, 20, 18], 'Stream': ['Math', 'Commerce', 'Arts', 'Biology'], 'Percentage': [88, 92, 95, 70]} # Convert the dictionary into DataFrame df = pd.DataFrame(data, columns=['Name', 'Age', 'Stream', 'Percentage']) print("Given Dataframe :\n", df) print("\nIterating over rows using loc function :\n") # iterate through each row and select # 'Name' and 'Age' column respectively. for i in range(len(df)): print(df.loc[i, "Name"], df.loc[i, "Age"])
输出
Given Dataframe :
Name Age Stream Percentage
0 Ankit 21 Math 88
1 Amit 19 Commerce 92
2 Aishwarya 20 Arts 95
3 Priyanka 18 Biology 70
Iterating over rows using loc function :
Ankit 21
Amit 19
Aishwarya 20
Priyanka 18
3. 使用DataFrame的iloc
# import pandas package as pd import pandas as pd # Define a dictionary containing students data data = {'Name': ['Ankit', 'Amit', 'Aishwarya', 'Priyanka'], 'Age': [21, 19, 20, 18], 'Stream': ['Math', 'Commerce', 'Arts', 'Biology'], 'Percentage': [88, 92, 95, 70]} # Convert the dictionary into DataFrame df = pd.DataFrame(data, columns=['Name', 'Age', 'Stream', 'Percentage']) print("Given Dataframe :\n", df) print("\nIterating over rows using iloc function :\n") # iterate through each row and select # 0th and 2nd index column respectively. for i in range(len(df)): print(df.iloc[i, 0], df.iloc[i, 2])
输出
Given Dataframe :
Name Age Stream Percentage
0 Ankit 21 Math 88
1 Amit 19 Commerce 92
2 Aishwarya 20 Arts 95
3 Priyanka 18 Biology 70
Iterating over rows using iloc function :
Ankit Math
Amit Commerce
Aishwarya Arts
Priyanka Biology
4. 使用Dataframe的iterrows()
# import pandas package as pd import pandas as pd # Define a dictionary containing students data data = {'Name': ['Ankit', 'Amit', 'Aishwarya', 'Priyanka'], 'Age': [21, 19, 20, 18], 'Stream': ['Math', 'Commerce', 'Arts', 'Biology'], 'Percentage': [88, 92, 95, 70]} # Convert the dictionary into DataFrame df = pd.DataFrame(data, columns=['Name', 'Age', 'Stream', 'Percentage']) print("Given Dataframe :\n", df) print("\nIterating over rows using iterrows() method :\n") # iterate through each row and select # 'Name' and 'Age' column respectively. for index, row in df.iterrows(): print(row["Name"], row["Age"])
输出
Given Dataframe :
Name Age Stream Percentage
0 Ankit 21 Math 88
1 Amit 19 Commerce 92
2 Aishwarya 20 Arts 95
3 Priyanka 18 Biology 70
Iterating over rows using iterrows() method :
Ankit 21
Amit 19
Aishwarya 20
Priyanka 18
5. 使用Dataframe的itertuples()
# import pandas package as pd import pandas as pd # Define a dictionary containing students data data = {'Name': ['Ankit', 'Amit', 'Aishwarya', 'Priyanka'], 'Age': [21, 19, 20, 18], 'Stream': ['Math', 'Commerce', 'Arts', 'Biology'], 'Percentage': [88, 92, 95, 70]} # Convert the dictionary into DataFrame df = pd.DataFrame(data, columns=['Name', 'Age', 'Stream', 'Percentage']) print("Given Dataframe :\n", df) print("\nIterating over rows using itertuples() method :\n") # iterate through each row and select # 'Name' and 'Percentage' column respectively. for row in df.itertuples(index=True, name='Pandas'): print(getattr(row, "Name"), getattr(row, "Percentage"))
输出
Given Dataframe :
Name Age Stream Percentage
0 Ankit 21 Math 88
1 Amit 19 Commerce 92
2 Aishwarya 20 Arts 95
3 Priyanka 18 Biology 70
Iterating over rows using itertuples() method :
Ankit 88
Amit 92
Aishwarya 95
Priyanka 70
6. 使用DataFrame的apply()
# import pandas package as pd import pandas as pd # Define a dictionary containing students data data = {'Name': ['Ankit', 'Amit', 'Aishwarya', 'Priyanka'], 'Age': [21, 19, 20, 18], 'Stream': ['Math', 'Commerce', 'Arts', 'Biology'], 'Percentage': [88, 92, 95, 70]} # Convert the dictionary into DataFrame df = pd.DataFrame(data, columns=['Name', 'Age', 'Stream', 'Percentage'])print("Given Dataframe :\n", df) print("\nIterating over rows using apply function :\n") # iterate through each row and concatenate # 'Name' and 'Percentage' column respectively. print(df.apply(lambda row: row["Name"] + " " + str(row["Percentage"]), axis=1))
输出
Given Dataframe :
Name Age Stream Percentage
0 Ankit 21 Math 88
1 Amit 19 Commerce 92
2 Aishwarya 20 Arts 95
3 Priyanka 18 Biology 70
Iterating over rows using apply function :
0 Ankit 88
1 Amit 92
2 Aishwarya 95
3 Priyanka 70
dtype: object
以上就是Pandas中迭代DataFrame行的方法总结的详细内容,更多关于Pandas Dataframe迭代行的资料请关注脚本之家其它相关文章!
最新评论