pytorch模型训练的时候GPU使用率不高的问题
前言
博主使用的显卡配置为:2*RTX 2080Ti,最近在训练的时候,监控显卡的资源使用情况发现,
虽然同是使用了两张显卡,但是每张显卡的使用率很不稳定,貌似是交替使用,这种情况下训练的速度是很慢的,为了解决
下面是解决这个问题的一些过程。
1. CPU和内存的使用情况
2. 用linux命令查看显卡资源的使用情况
watch -n 1 nvidia-smi
模型执行预测阶段 使用显卡0,但是也只有51%的使用率。
模型在训练阶段,同时使用两张显卡,发现里利用率也不高,我截取的最高的也就60%
3. 在pytorch的文档中找到了解决办法
data.DataLoader(dataset: Dataset[T_co], batch_size: Optional[int] = 1, shuffle: bool = False, sampler: Optional[Sampler[int]] = None, batch_sampler: Optional[Sampler[Sequence[int]]] = None, num_workers: int = 0, collate_fn: _collate_fn_t = None, pin_memory: bool = False, drop_last: bool = False, timeout: float = 0, worker_init_fn: _worker_init_fn_t = None, multiprocessing_context=None, generator=None, *, prefetch_factor: int = 2, persistent_workers: bool = False)
上面是该类的输入参数,经常使用的用红色标出,与本文相关的设置用紫色标出,
下面是该类的描述文件:
class DataLoader(Generic[T_co]): r""" Data loader. Combines a dataset and a sampler, and provides an iterable over the given dataset. The :class:`~torch.utils.data.DataLoader` supports both map-style and iterable-style datasets with single- or multi-process loading, customizing loading order and optional automatic batching (collation) and memory pinning. See :py:mod:`torch.utils.data` documentation page for more details. Args: dataset (Dataset): dataset from which to load the data. batch_size (int, optional): how many samples per batch to load (default: ``1``). shuffle (bool, optional): set to ``True`` to have the data reshuffled at every epoch (default: ``False``). sampler (Sampler or Iterable, optional): defines the strategy to draw samples from the dataset. Can be any ``Iterable`` with ``__len__`` implemented. If specified, :attr:`shuffle` must not be specified. batch_sampler (Sampler or Iterable, optional): like :attr:`sampler`, but returns a batch of indices at a time. Mutually exclusive with :attr:`batch_size`, :attr:`shuffle`, :attr:`sampler`, and :attr:`drop_last`. num_workers (int, optional): how many subprocesses to use for data loading. ``0`` means that the data will be loaded in the main process. (default: ``0``) collate_fn (callable, optional): merges a list of samples to form a mini-batch of Tensor(s). Used when using batched loading from a map-style dataset. pin_memory (bool, optional): If ``True``, the data loader will copy Tensors into CUDA pinned memory before returning them. If your data elements are a custom type, or your :attr:`collate_fn` returns a batch that is a custom type, see the example below. drop_last (bool, optional): set to ``True`` to drop the last incomplete batch, if the dataset size is not divisible by the batch size. If ``False`` and the size of dataset is not divisible by the batch size, then the last batch will be smaller. (default: ``False``) timeout (numeric, optional): if positive, the timeout value for collecting a batch from workers. Should always be non-negative. (default: ``0``) worker_init_fn (callable, optional): If not ``None``, this will be called on each worker subprocess with the worker id (an int in ``[0, num_workers - 1]``) as input, after seeding and before data loading. (default: ``None``) prefetch_factor (int, optional, keyword-only arg): Number of samples loaded in advance by each worker. ``2`` means there will be a total of 2 * num_workers samples prefetched across all workers. (default: ``2``) persistent_workers (bool, optional): If ``True``, the data loader will not shutdown the worker processes after a dataset has been consumed once. This allows to maintain the workers `Dataset` instances alive. (default: ``False``) .. warning:: If the ``spawn`` start method is used, :attr:`worker_init_fn` cannot be an unpicklable object, e.g., a lambda function. See :ref:`multiprocessing-best-practices` on more details related to multiprocessing in PyTorch. .. warning:: ``len(dataloader)`` heuristic is based on the length of the sampler used. When :attr:`dataset` is an :class:`~torch.utils.data.IterableDataset`, it instead returns an estimate based on ``len(dataset) / batch_size``, with proper rounding depending on :attr:`drop_last`, regardless of multi-process loading configurations. This represents the best guess PyTorch can make because PyTorch trusts user :attr:`dataset` code in correctly handling multi-process loading to avoid duplicate data. However, if sharding results in multiple workers having incomplete last batches, this estimate can still be inaccurate, because (1) an otherwise complete batch can be broken into multiple ones and (2) more than one batch worth of samples can be dropped when :attr:`drop_last` is set. Unfortunately, PyTorch can not detect such cases in general. See `Dataset Types`_ for more details on these two types of datasets and how :class:`~torch.utils.data.IterableDataset` interacts with `Multi-process data loading`_. .. warning:: See :ref:`reproducibility`, and :ref:`dataloader-workers-random-seed`, and :ref:`data-loading-randomness` notes for random seed related questions. """
发现如下连个参数很关键:
num_workers (int, optional): how many subprocesses to use for data loading. ``0`` means that the data will be loaded in the main process. (default: ``0``)
pin_memory (bool, optional): If ``True``, the data loader will copy Tensors into CUDA pinned memory before returning them. If your data elements are a custom type, or your :attr:`collate_fn` returns a batch that is a custom type, see the example below.
把 num_workers = 4,pin_memory = True,发现效率就上来啦!!!
只开 num_workers
开 num_workers 和 pin_memory
总结
以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。
相关文章
如何在Django中添加没有微秒的 DateTimeField 属性详解
这篇文章主要给大家介绍了关于如何在Django中添加没有微秒的 DateTimeField 属性的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧2019-01-01
最新评论