使用python如何将数据集划分为训练集、验证集和测试集
更新时间:2023年09月09日 09:15:34 作者:肖申克的陪伴
这篇文章主要介绍了使用python如何将数据集划分为训练集、验证集和测试集问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
python将数据集划分为训练集、验证集和测试集
划分数据集
众所周知,将一个数据集只区分为训练集和验证集是不行的,还需要有测试集,本博文针对上一篇没有分出测试集的不足,重新划分数据集
直接上代码:
#split_data.py #划分数据集flower_data,数据集划分到flower_datas中,训练集:验证集:测试集比例为6:2:2 import os import random from shutil import copy2 # 源文件路径 file_path = r"D:/other/ClassicalModel/other/flower_data" # 新文件路径 new_file_path = r"D:/other/ClassicalModel/other/flower_datas" # 划分数据比例为6:2:2 split_rate = [0.6, 0.2, 0.2] print("Starting...") print("Ratio= {}:{}:{}".format(int(split_rate[0] * 10), int(split_rate[1] * 10), int(split_rate[2] * 10))) class_names = os.listdir(file_path) # 在目标目录下创建文件夹 split_names = ['train', 'val', 'test'] # 判断是否存在木匾文件夹 if os.path.isdir(new_file_path): pass else: os.mkdir(new_file_path) for split_name in split_names: # split_path = os.path.join(new_file_path, split_name) split_path = new_file_path + "/" + split_name if os.path.isdir(split_path): pass else: os.mkdir(split_path) # 然后在split_path的目录下创建类别文件夹 for class_name in class_names: class_split_path = os.path.join(split_path, class_name) if os.path.isdir(class_split_path): pass else: os.mkdir(class_split_path) # 按照比例划分数据集,并进行数据图片的复制 # 首先进行分类遍历 for class_name in class_names: current_class_data_path = os.path.join(file_path, class_name) current_all_data = os.listdir(current_class_data_path) current_data_length = len(current_all_data) current_data_index_list = list(range(current_data_length)) random.shuffle(current_data_index_list) train_path = os.path.join(os.path.join(new_file_path, 'train'), class_name) val_path = os.path.join(os.path.join(new_file_path, 'val'), class_name) test_path = os.path.join(os.path.join(new_file_path, 'test'), class_name) train_stop_flag = current_data_length * split_rate[0] val_stop_flag = current_data_length * (split_rate[0] + split_rate[1]) current_idx = 0 train_num = 0 val_num = 0 test_num = 0 for i in current_data_index_list: src_img_path = os.path.join(current_class_data_path, current_all_data[i]) if current_idx <= train_stop_flag: copy2(src_img_path, train_path train_num = train_num + 1 elif (current_idx > train_stop_flag) and (current_idx <= val_stop_flag): copy2(src_img_path, val_path) val_num = val_num + 1 else: copy2(src_img_path, test_path test_num = test_num + 1 current_idx = current_idx + 1 print("<{}> has {} pictures,train:val:test={}:{}:{}".format(class_name, current_data_length, train_num, val_num, test_num)) print("Done")
输出结果:
注意:
只需要修改file_path(源文件夹)和new_file_path(新生成的文件夹)
其次是修改split_rate
python自动划分训练集和测试集
在进行深度学习的模型训练时,我们通常需要将数据进行划分,划分成训练集和测试集,若数据集太大,数据划分花费的时间太多!!!
不多说,上代码(python代码)
代码
# *_*coding: utf-8 *_* import os import random import shutil import time def copyFile(fileDir,origion_path1,class_name): name = class_name path = origion_path1 image_list = os.listdir(fileDir) # 获取图片的原始路径 image_number = len(image_list) train_number = int(image_number * train_rate) train_sample = random.sample(image_list, train_number) # 从image_list中随机获取0.75比例的图像. test_sample = list(set(image_list) - set(train_sample)) sample = [train_sample, test_sample] # 复制图像到目标文件夹 for k in range(len(save_dir)): if os.path.isdir(save_dir[k]) and os.path.isdir(save_dir1[k]): for name in sample[k]: name1 = name.split(".")[0] + '.xml' shutil.copy(os.path.join(fileDir, name), os.path.join(save_dir[k], name)) shutil.copy(os.path.join(path, name1), os.path.join(save_dir1[k], name1)) else: os.makedirs(save_dir[k]) os.makedirs(save_dir1[k]) for name in sample[k]: name1 = name.split(".")[0] + '.xml' shutil.copy(os.path.join(fileDir, name), os.path.join(save_dir[k], name)) shutil.copy(os.path.join(path, name1), os.path.join(save_dir1[k], name1)) if __name__ == '__main__': time_start = time.time() # 原始数据集路径 origion_path = './JPEGImages/' origion_path1 = './Annotations/' # 保存路径 save_train_dir = './train/JPEGImages/' save_test_dir = './test/JPEGImages/' save_train_dir1 = './train/Annotations/' save_test_dir1 = './test/Annotations/' save_dir = [save_train_dir, save_test_dir] save_dir1 = [save_train_dir1, save_test_dir1] # 训练集比例 train_rate = 0.75 # 数据集类别及数量 file_list = os.listdir(origion_path) num_classes = len(file_list) for i in range(num_classes): class_name = file_list[i] copyFile(origion_path,origion_path1,class_name) print('划分完毕!') time_end = time.time() print('---------------') print('训练集和测试集划分共耗时%s!' % (time_end - time_start))
1.需要修改的地方
- origion_path:图片路径
- origion_path1:xml文件路径
- train_rate:训练集比例
2.执行文件deal.py后生成
- train-img:训练集图片数据
- train-xml:训练集xml数据
- test-img:测试集图片数据
- test-xml:测试及xml数据
3.train_rate可以根据实际情况进行调整,一般train:test是3:1
注:每次划分数据都是随机的,每次执行时将之前划分好的数据保存或者重命名,不然会重复写入到4个文件夹中
总结
以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。
最新评论