pytorch中构建模型的3种方法详解

 更新时间:2023年09月22日 16:00:20   作者:hxh207  
这篇文章主要介绍了pytorch中构建模型的3种方法,分别是使用继承nn.Module基类构建自定义模型,使用nn.Sequential按层顺序构建模型或者,继承nn.Module基类构建模型并辅助应用模型容器进行封装(nn.Sequential,nn.ModuleList,nn.ModuleDict),需要的朋友可以参考下

可以使用以下3种方式构建模型:

1,继承nn.Module基类构建自定义模型。

2,使用nn.Sequential按层顺序构建模型。

3,继承nn.Module基类构建模型并辅助应用模型容器进行封装(nn.Sequential,nn.ModuleList,nn.ModuleDict)。

其中 第1种方式最为常见,第2种方式最简单,第3种方式最为灵活也较为复杂。推荐使用第1种方式构建模型。

一、继承nn.Module基类构建自定义模型

以下是继承nn.Module基类构建自定义模型的一个范例。模型中的用到的层一般在__init__函数中定义,然后在forward方法中定义模型的正向传播逻辑

from torch import nn 
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3)
        self.pool1 = nn.MaxPool2d(kernel_size = 2,stride = 2)
        self.conv2 = nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5)
        self.pool2 = nn.MaxPool2d(kernel_size = 2,stride = 2)
        self.dropout = nn.Dropout2d(p = 0.1)
        self.adaptive_pool = nn.AdaptiveMaxPool2d((1,1))
        self.flatten = nn.Flatten()
        self.linear1 = nn.Linear(64,32)
        self.relu = nn.ReLU()
        self.linear2 = nn.Linear(32,1)
    def forward(self,x):
        x = self.conv1(x)
        x = self.pool1(x)
        x = self.conv2(x)
        x = self.pool2(x)
        x = self.dropout(x)
        x = self.adaptive_pool(x)
        x = self.flatten(x)
        x = self.linear1(x)
        x = self.relu(x)
        y = self.linear2(x)
        return y
net = Net()
print(net)

image.png

from torchkeras import summary 
summary(net,input_shape= (3,32,32));

nn.Conv1d:普通一维卷积,常用于文本。参数个数 = 输入通道数×卷积核尺寸(如3)×卷积核个数 + 卷积核尺寸(如3)=卷积核尺寸(如3乘3)x输出通道数+输出通道数(偏置数量)

nn.Conv2d:普通二维卷积,常用于图像。参数个数 = 输入通道数×卷积核尺寸(如3乘3)×卷积核个数 + 卷积核尺寸(如3乘3)。=卷积核尺寸(如3乘3)x输入通道数x输出通道数+输出通道数(偏置数量)) 通过调整dilation参数大于1,可以变成空洞卷积,增加感受野。 通过调整groups参数不为1,可以变成分组卷积。分组卷积中每个卷积核仅对其对应的一个分组进行操作。 当groups参数数量等于输入通道数时,相当于tensorflow中的二维深度卷积层tf.keras.layers.DepthwiseConv2D。 利用分组卷积和1乘1卷积的组合操作,可以构造相当于Keras中的二维深度可分离卷积层tf.keras.layers.SeparableConv2D。

image.png

二、使用nn.Sequential按层顺序构建模型

使用nn.Sequential按层顺序构建模型无需定义forward方法。仅仅适合于简单的模型。以下是使用nn.Sequential搭建模型的一些等价方法。

利用add_module方法

net = nn.Sequential()
net.add_module("conv1",nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3))
net.add_module("pool1",nn.MaxPool2d(kernel_size = 2,stride = 2))
net.add_module("conv2",nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5))
net.add_module("pool2",nn.MaxPool2d(kernel_size = 2,stride = 2))
net.add_module("dropout",nn.Dropout2d(p = 0.1))
net.add_module("adaptive_pool",nn.AdaptiveMaxPool2d((1,1)))
net.add_module("flatten",nn.Flatten())
net.add_module("linear1",nn.Linear(64,32))
net.add_module("relu",nn.ReLU())
net.add_module("linear2",nn.Linear(32,1))
print(net)

image.png

利用变长参数

这种方式构建时不能给每个层指定名称。

net = nn.Sequential(
    nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3),
    nn.MaxPool2d(kernel_size = 2,stride = 2),
    nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5),
    nn.MaxPool2d(kernel_size = 2,stride = 2),
    nn.Dropout2d(p = 0.1),
    nn.AdaptiveMaxPool2d((1,1)),
    nn.Flatten(),
    nn.Linear(64,32),
    nn.ReLU(),
    nn.Linear(32,1)
)
print(net)

image.png

利用OrderedDict

键值对形式:键为层的名字,值为层的定义

from collections import OrderedDict
net = nn.Sequential(OrderedDict(
          [("conv1",nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3)),
            ("pool1",nn.MaxPool2d(kernel_size = 2,stride = 2)),
            ("conv2",nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5)),
            ("pool2",nn.MaxPool2d(kernel_size = 2,stride = 2)),
            ("dropout",nn.Dropout2d(p = 0.1)),
            ("adaptive_pool",nn.AdaptiveMaxPool2d((1,1))),
            ("flatten",nn.Flatten()),
            ("linear1",nn.Linear(64,32)),
            ("relu",nn.ReLU()),
            ("linear2",nn.Linear(32,1))
          ])
        )
print(net)

image.png

三、继承nn.Module基类构建模型并辅助应用模型容器进行封装

当模型的结构比较复杂时,我们可以应用模型容器(nn.Sequential,nn.ModuleList,nn.ModuleDict)对模型的部分结构进行封装。

这样做会让模型整体更加有层次感,有时候也能减少代码量。(复杂模型的时候比较常用)注意,在下面的范例中我们每次仅仅使用一种模型容器,但实际上这些模型容器的使用是非常灵活的,可以在一个模型中任意组合任意嵌套使用。

相当于结合以上两种方式。

nn.Sequential作为模型容器

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv = nn.Sequential(
            nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3),
            nn.MaxPool2d(kernel_size = 2,stride = 2),
            nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5),
            nn.MaxPool2d(kernel_size = 2,stride = 2),
            nn.Dropout2d(p = 0.1),
            nn.AdaptiveMaxPool2d((1,1))
        )
        self.dense = nn.Sequential(
            nn.Flatten(),
            nn.Linear(64,32),
            nn.ReLU(),
            nn.Linear(32,1)
        )
    def forward(self,x):
        x = self.conv(x)
        y = self.dense(x)
        return y 
net = Net()
print(net)

image.png

nn.ModuleList作为模型容器

注意下面中的ModuleList不能用Python中的列表代替。(即不用省略)

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.layers = nn.ModuleList([
            nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3),
            nn.MaxPool2d(kernel_size = 2,stride = 2),
            nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5),
            nn.MaxPool2d(kernel_size = 2,stride = 2),
            nn.Dropout2d(p = 0.1),
            nn.AdaptiveMaxPool2d((1,1)),
            nn.Flatten(),
            nn.Linear(64,32),
            nn.ReLU(),
            nn.Linear(32,1)]
        )
    def forward(self,x):
        for layer in self.layers:
            x = layer(x)
        return x
net = Net()
print(net)

image.png

nn.ModuleDict作为模型容器

注意下面中的ModuleDict不能用Python中的字典代替。

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.layers_dict = nn.ModuleDict({"conv1":nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3),
               "pool": nn.MaxPool2d(kernel_size = 2,stride = 2),
               "conv2":nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5),
               "dropout": nn.Dropout2d(p = 0.1),
               "adaptive":nn.AdaptiveMaxPool2d((1,1)),
               "flatten": nn.Flatten(),
               "linear1": nn.Linear(64,32),
               "relu":nn.ReLU(),
               "linear2": nn.Linear(32,1)
              })
    def forward(self,x):
        layers = ["conv1","pool","conv2","pool","dropout","adaptive",
                  "flatten","linear1","relu","linear2","sigmoid"]
        for layer in layers:
            x = self.layers_dict[layer](x) # 只找有的 sigmoid是没有的
        return x
net = Net()
print(net)

image.png

参考:https://github.com/lyhue1991/eat_pytorch_in_20_days

到此这篇关于pytorch中构建模型的3种方法的文章就介绍到这了,更多相关pytorch构建模型内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:

相关文章

  • python数据预处理 :样本分布不均的解决(过采样和欠采样)

    python数据预处理 :样本分布不均的解决(过采样和欠采样)

    今天小编就为大家分享一篇python数据预处理 :样本分布不均的解决(过采样和欠采样),具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-02-02
  • python调用支付宝支付接口流程

    python调用支付宝支付接口流程

    这篇文章主要介绍了python调用支付宝支付接口流程,本文给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
    2019-08-08
  • Python web框架fastapi中间件的使用及CORS跨域问题

    Python web框架fastapi中间件的使用及CORS跨域问题

    fastapi "中间件"是一个函数,它在每个请求被特定的路径操作处理之前,以及在每个响应之后工作,它接收你的应用程序的每一个请求,下面通过本文给大家介绍Python web框架fastapi中间件的使用及CORS跨域问题,感兴趣的朋友一起看看吧
    2024-03-03
  • pandas温差查询案例的实现

    pandas温差查询案例的实现

    本文主要介绍了pandas温差查询案例的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2022-06-06
  • 使用Python实现不同需求的排行榜功能

    使用Python实现不同需求的排行榜功能

    这篇文章主要为大家介绍了Python实现不同需求的排行榜功能,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2024-01-01
  • Python使用PyPDF2库实现向PDF文件中插入内容

    Python使用PyPDF2库实现向PDF文件中插入内容

    Python的PyPDF2库是一个强大的工具,它允许我们方便地操作PDF文件,包括合并、拆分、旋转页面等操作,下面我们就来看看如何使用PyPDF2库实现向PDF文件中插入内容吧
    2024-04-04
  • Python写安全小工具之TCP全连接端口扫描器

    Python写安全小工具之TCP全连接端口扫描器

    这篇文章主要介绍了Python写安全小工具之TCP全连接端口扫描器,文章通过TCP connect来实现一个TCP全连接端口扫描器。具有一定的参考价值,需要的小伙伴可以参考一下
    2022-05-05
  • Python实现Kerberos用户的增删改查操作

    Python实现Kerberos用户的增删改查操作

    这篇文章主要介绍了Python实现Kerberos用户的增删改查操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-12-12
  • django中使用POST方法获取POST数据

    django中使用POST方法获取POST数据

    这篇文章主要介绍了django中使用POST方法获取POST数据,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-08-08
  • Python如何根据照片修改时间重命名并排序详解

    Python如何根据照片修改时间重命名并排序详解

    重命名操作是我们开发中经常遇到的一个需求,下面这篇文章主要给大家介绍了关于Python如何根据照片修改时间重命名并排序的相关资料,需要的朋友可以参考下
    2021-05-05

最新评论