python图片由RGB空间转成LAB空间的实现方式
更新时间:2023年10月12日 14:56:11 作者:Fly~~
这篇文章主要介绍了python图片由RGB空间转成LAB空间的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
python图片由RGB空间转成LAB空间
RGB转Lab颜色空间
RGB颜色空间不能直接转换为Lab颜色空间,需要借助XYZ颜色空间,把RGB颜色空间转换到XYZ颜色空间,之后再把XYZ颜色空间转换到Lab颜色空间。
RGB与XYZ颜色空间有如下关系:
其中m如下:
XYZ到LAB的转换公式如下
X_(1,) Y_(1,) Z_(1,)分别是X,Y,X线性归一化之后的值,其中f(x)如下:
python实现
import numpy as np import cv2 # region 辅助函数 # RGB2XYZ空间的系数矩阵 M = np.array([[0.412453, 0.357580, 0.180423], [0.212671, 0.715160, 0.072169], [0.019334, 0.119193, 0.950227]]) # im_channel取值范围:[0,1] def f(im_channel): return np.power(im_channel, 1 / 3) if im_channel > 0.008856 else 7.787 * im_channel + 0.137931 def anti_f(im_channel): return np.power(im_channel, 3) if im_channel > 0.206893 else (im_channel - 0.137931) / 7.787 # endregion # region RGB 转 Lab # 像素值RGB转XYZ空间,pixel格式:(B,G,R) # 返回XYZ空间下的值 def __rgb2xyz__(pixel): b, g, r = pixel[0], pixel[1], pixel[2] rgb = np.array([r, g, b]) # rgb = rgb / 255.0 # RGB = np.array([gamma(c) for c in rgb]) XYZ = np.dot(M, rgb.T) XYZ = XYZ / 255.0 return (XYZ[0] / 0.95047, XYZ[1] / 1.0, XYZ[2] / 1.08883) def __xyz2lab__(xyz): """ XYZ空间转Lab空间 :param xyz: 像素xyz空间下的值 :return: 返回Lab空间下的值 """ F_XYZ = [f(x) for x in xyz] L = 116 * F_XYZ[1] - 16 if xyz[1] > 0.008856 else 903.3 * xyz[1] a = 500 * (F_XYZ[0] - F_XYZ[1]) b = 200 * (F_XYZ[1] - F_XYZ[2]) return (L, a, b) def RGB2Lab(pixel): """ RGB空间转Lab空间 :param pixel: RGB空间像素值,格式:[G,B,R] :return: 返回Lab空间下的值 """ xyz = __rgb2xyz__(pixel) Lab = __xyz2lab__(xyz) return Lab if __name__ == '__main__': img = cv2.imread(r'2020_94470.jpg') w = img.shape[0] h = img.shape[1] img_new = np.zeros((w, h, 3)) lab = np.zeros((w, h, 3)) for i in range(w): for j in range(h): Lab = RGB2Lab(img[i, j]) lab[i, j] = (Lab[0], Lab[1], Lab[2]) cv2.imwrite(r'00000122_1.jpg', lab)
比较颜色相似度,RGB空间转Lab空间
import numpy as np from colormath.color_objects import LabColor, sRGBColor from colormath.color_conversions import convert_color from colormath.color_diff import delta_e_cie2000 np.set_printoptions(np.inf) class Color(object): def __init__(self, color_file = 'color_list.txt'): self.color_name_en = [] self.color_name_zh = [] self.color_HEX = [] self.color_RGB = [] self.color_Lab = [] self.readColorFile(color_file) def readColorFile(self, color_file): with open(color_file, 'r', encoding='utf-8') as f: colors = f.readlines() for color in colors: lc = color.split('\t') self.color_name_en.append(lc[0].strip()) self.color_name_zh.append(lc[1].strip()) self.color_HEX.append(lc[2].strip()) rgb = lc[3].strip().split(',') rgb = [int(v) for v in rgb] self.color_RGB.append(rgb) self.rgbToLab() def rgbToLab(self): for rgb in self.color_RGB: srgb = sRGBColor(*rgb) lab = convert_color(srgb, LabColor) self.color_Lab.append(lab) def getMinCIE2000Distance(self, rgb): srgb = sRGBColor(*rgb) tlab = convert_color(srgb, LabColor) min_index = -1 min_delta_e = np.inf for idx, lab in enumerate(self.color_Lab): delta_e = delta_e_cie2000(tlab, lab) if delta_e < min_delta_e: min_delta_e = delta_e min_index = idx return min_delta_e, min_index def calculateRGBDistance(self, rgb=(0,0,0)): array_rgb = np.array(self.color_RGB) print(array_rgb) print(array_rgb.shape) temp1_rgb = (rgb - array_rgb) / 255 temp2_rgb = temp1_rgb[:,0]*temp1_rgb[:,0] + temp1_rgb[:,1]*temp1_rgb[:,1] + temp1_rgb[:,2]*temp1_rgb[:,2] def __getitem__(self, index): info = f"英文代码 : {self.color_name_en[index]}\n" info += f"形象颜色 : {self.color_name_zh[index]}\n" info += f"HEX格式 : {self.color_HEX[index]}\n" info += f"RGB格式 : {self.color_RGB[index]}\n" info += f"Lab格式 : {self.color_Lab[index]}\n\n" return info def __len__(self): assert len(self.color_name_en) == len(self.color_name_zh) assert len(self.color_name_en) == len(self.color_HEX) assert len(self.color_name_en) == len(self.color_RGB) return len(self.color_name_en) if __name__ == '__main__': c = Color() rgb = (123, 145, 111) delta_e, index = c.getMinCIE2000Distance(rgb) print(delta_e, index) print(c[index])
总结
以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。
最新评论