python读取文件由于编码问题失败汇总以及解决办法

 更新时间:2023年10月13日 11:15:52   作者:JasonLiu1919  
这篇文章主要给大家介绍了关于python读取文件由于编码问题失败汇总以及解决办法的相关资料,文件编码错误指的是在Python读取文件的过程中出现的编码不匹配的问题,需要的朋友可以参考下

背景

在日常工作中常常涉及用Python读取文件,但是经常遇到各种失败,比如:

UnicodeDecodeError: 'utf-8' codec can't decode byte 0xed in position 6342: invalid continuation byte

问题1

分析和排查

本次实验使用 pandas 读取文本并展示前5条数据:

import pandas as pd
raw_file = "/share/jiepeng.liu/public_data/ner/weiboNER/weiboNER.conll.dev"
df = pd.read_csv(raw_file, sep='\t')
print(df.head())

读取文件的时候报错:

    df = pd.read_csv(raw_file, sep='\t')
  File "/opt/conda/lib/python3.8/site-packages/pandas/util/_decorators.py", line 311, in wrapper
    return func(*args, **kwargs)
  File "/opt/conda/lib/python3.8/site-packages/pandas/io/parsers/readers.py", line 680, in read_csv
    return _read(filepath_or_buffer, kwds)
  File "/opt/conda/lib/python3.8/site-packages/pandas/io/parsers/readers.py", line 575, in _read
    parser = TextFileReader(filepath_or_buffer, **kwds)
  File "/opt/conda/lib/python3.8/site-packages/pandas/io/parsers/readers.py", line 934, in __init__
    self._engine = self._make_engine(f, self.engine)
  File "/opt/conda/lib/python3.8/site-packages/pandas/io/parsers/readers.py", line 1236, in _make_engine
    return mapping[engine](f, **self.options)
  File "/opt/conda/lib/python3.8/site-packages/pandas/io/parsers/c_parser_wrapper.py", line 75, in __init__
    self._reader = parsers.TextReader(src, **kwds)
  File "pandas/_libs/parsers.pyx", line 544, in pandas._libs.parsers.TextReader.__cinit__
  File "pandas/_libs/parsers.pyx", line 633, in pandas._libs.parsers.TextReader._get_header
  File "pandas/_libs/parsers.pyx", line 847, in pandas._libs.parsers.TextReader._tokenize_rows
  File "pandas/_libs/parsers.pyx", line 1952, in pandas._libs.parsers.raise_parser_error
UnicodeDecodeError: 'utf-8' codec can't decode byte 0xed in position 6342: invalid continuation byte

该问题是由于出现了无法进行转换的二进制数据造成的,可以写一个脚本来判断,是整体的字符集参数选择上出现了问题,还是出现了部分的无法转换的二进制块

raw_file = "/share/jiepeng.liu/public_data/ner/weiboNER/weiboNER.conll.dev"
def check_pd_read_utf8():
    #以读入文件为例:
    f = open(raw_file, "rb")#二进制格式读文件
    print("file_name=", raw_file)
    line_num = 0
    while True:
        line = f.readline()
        line_num +=1
        if not line:
            break
        else:
            try:
                #print(line.decode('utf8'))
                line.decode('utf8')
                #为了暴露出错误,最好此处不print
            except:
                print("line num={}, text={}".format(line_num, str(line)))

具体有几种可能:

  • 如果输出的代码都是hex形式的,可能就是选择的解码字符集出现了错误。 对于python2.7版本的来说,网上有使用这样一种方式处理:
#coding=utf8
import sys
reload(sys)
sys.setdefaultencoding("UTF-8")

但是,上述这种方法在python3版本中,已经取消了。

  • 如果是字符集出现错误,可以使用特定方式判断其字符集编码方式。这部分脚本代码会在后面补充贴出来。也可以使用notepad++打开目标文件,查看右下角的部位,会指示该文件是那种编码。
  • 有的情况,是这样的,整个文件是好的,如果用notepad++打开后,能够看到文件是可以打开的,似乎什么问题都没有发生过,但是,用python进行解码的时候,却会出现错误(上述实验代码就是这种情况)。

check_pd_read_utf8 函数运行结果如下:

line num=996, text=b'\xed\xa0\xbd\tO\n'
line num=997, text=b'\xed\xb0\xad\tO\n'
line num=998, text=b'\xed\xa0\xbd\tO\n'
line num=999, text=b'\xed\xb0\xad\tO\n'
line num=1000, text=b'\xed\xa0\xbd\tO\n'
line num=1001, text=b'\xed\xb0\xad\tO\n'
line num=1875, text=b'\xed\xa0\xbc\tO\n'
line num=1876, text=b'\xed\xbd\x9d\tO\n'
line num=1877, text=b'\xed\xa0\xbc\tO\n'
line num=1878, text=b'\xed\xbd\x9b\tO\n'
line num=1879, text=b'\xed\xa0\xbc\tO\n'
line num=1880, text=b'\xed\xbd\xb1\tO\n'
line num=1881, text=b'\xed\xa0\xbc\tO\n'
line num=1882, text=b'\xed\xbd\xa3\tO\n'
line num=1883, text=b'\xed\xa0\xbc\tO\n'
line num=1884, text=b'\xed\xbd\x99\tO\n'

进一步查看原始文件:

解决方法

确实在特定行数据上存在不属于编码字符集中的内容,从而导致’utf-8’解码失败。有两种处理方式,

  • 在原始数据中将对应的行删除
  • 在pandas读取文件时,设置encoding_errors='ignore',将错误行直接忽略
import pandas as pd
raw_file = "/share/jiepeng.liu/public_data/ner/weiboNER/weiboNER.conll.dev"
df = pd.read_csv(raw_file, sep='\t', encoding_errors='ignore')
print(df.head())

问题2

分析和排查

在用 pandas.read_csv 读取文件后报错:

pandas.errors.ParserError: Error tokenizing data. C error: EOF inside string starting at row 39252

出现上述问题,说明在特定行存在错误字符,这种错误字符的存在使得 pandas csv 解析器无法读取整个文件。

pandas.errors.ParserError: Error tokenizing data. C error: EOF 报错是因为pandas读取csv文件时,会默认把csv文件中两个双引号之间的内容解析为一个string,作为一个字段域读入,并且忽略两个双引号之间的分隔符。所以,在默认方式下,一旦文件中出现了奇数个双引号,那么最后一个引号从所在的行开始,直到文件结束也没有对应的结束引号形成单个字段域,就会报这个异常,即文件结束符(EOF)出现在了字符串中。

统计原始文件中双引号的个数:

解决方法

  • 直接删除一个双引号的行数据,从而确保双引号的数量为偶数
  • 读取文件时,增加参数quoting=csv.QUOTE_NONE

较为优雅的解决方式是设置参数quoting的值,从而改变pandas在读取csv的上述默认行为。在pandas的read_csv函数中,有两个参数和这个行为有关,分别是quotechar引用符和quoting引用行为,如下所示,摘自pandas的官方文档。

quotechar : str (length 1), optional

The character used to denote the start and end of a quoted item. Quoted items can include the delimiter and it will be ignored.

quoting : int or csv.QUOTE_* instance, default 0

Control field quoting behavior per csv.QUOTE_* constants. Use one of QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or QUOTE_NONE (3).

quotechar 引用符参数是表示在读取解析时,将指定的符号认为是引用符,不仅仅限制于双引号,默认情况下是双引号。被设为引用符之后,就会按照上面所述的那样,在引用符之间的内容会被解析为单个域读入,包括换行符和分隔符。而quoting表示引用行为,即如何对待引用符的解析。这里具有四种情况,分别是csv.QUOTE_MINIMAL, csv.QUOTE_ALL, csv.QUOTE_NONNUMERIC, csv.QUOTE_NONE默认是csv.QUOTE_MINIMAL。这4个参数的解释如下:

  • csv.QUOTE_MINIMAL:只有当遇到引用符时,才会将引用符之间的内容解析为一个字符域读入,并且读取之后的域是没有引用符的,即引用符本身只作为一个域的边界界定,不会显示出来;在写入时,也只有具有引用符的域会在文件中加上引用符。

  • csv.QUOTE_ALL:在写入文件时,将所有的域都加上引用符。

  • csv.QUOTE_NONNUMERIC:写入文件时,将非数字域加上引用符。

  • csv.QUOTE_NONE:读取文件时,不解析引用符,即把引用符当做普通字符对待并且读入,不做特殊的对待;在写入文件时,也不对任何域加上引用符。

所以,要解决本次实验过程遇到的异常,只需要将quoting参数设为3,或者导入python的内置模块csv,设为csv.QUOTE_NONE,这样pandas在读取时,就只会把引用符当做普通字符,从而不会一直寻找对应的结束引用符直至文件结束都没找到,从而报错。当然,由于这行是乱码,分隔符数量很可能也不正常,即分隔后和前面的行的域的个数不一致,还会报错,所以只需要将error_bad_lines参数设为False,这样pandas就会自动删除这种不正常的bad lines,从而文件剩下的正常的内容就可以正常的读入了。pandas 1.3版本之后推荐使用on_bad_lines这个参数,可以将其on_bad_lines='skip'实现等同功能。当然,根据quotechar的功能,也可以通过将quotechar设为其他的单个字符,从而pandas会把双引号当做普通字符,但是这样做的风险在于可能会触发其他引用符带来的异常,所以不推荐这样做。

附录

检查文件编码类型代码如下:

import chardet
# 使用 chardet 检查文件编码类型
def check_file_encoding_type_chardet(file):
    # 二进制方式读取,获取字节数据,检测类型
    with open(file, 'rb') as f:
        encoding = chardet.detect(f.read())['encoding']
        #这种方式把整个文件读取进去,如果存在异常编码异常的字符(比如问题1中的数据),会返回None
        #encoding = chardet.detect(f.read()[0:1024])['encoding']# 只读取部分数据,更快
    print("chardet check file encoding type=", encoding)
file_name = "/share/jiepeng.liu/public_data/ner/weiboNER/weiboNER.conll.train"
check_file_encoding_type_chardet(file_name)
# 使用 magic 来检查文件编码类型
def check_file_encoding_type_magic():
    # pip install python-magic
    import magic
    blob = open(file_name, 'rb').read()
    m = magic.Magic(mime_encoding=True)
    encoding = m.from_buffer(blob)
    print("magic check file encoding type=", encoding)
check_file_encoding_type_magic()
# 检查哪一行出现编码异常
def check_pd_read_utf8():
    #以读入文件为例:
    f = open(file_name, "rb")#二进制格式读文件
    print("file_name=", file_name)
    line_num = 0
    while True:
        line = f.readline()
        line_num +=1
        if not line:
            break
        else:
            try:
                #print(line.decode('utf8'))
                line.decode('utf8')
                #为了暴露出错误,最好此处不print
            except:
                print("line num={}, text={}".format(line_num, str(line)))
check_pd_read_utf8()

总结 

到此这篇关于python读取文件由于编码问题失败汇总以及解决办法的文章就介绍到这了,更多相关python读取文件编码问题失败内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 关于Python中的闭包详解

    关于Python中的闭包详解

    大家好,本篇文章主要讲的是关于Python中的闭包详解,感兴趣的同学感快来看一看吧,对你有帮助的话记得收藏一下
    2022-01-01
  • python Django 反向访问器的外键冲突解决

    python Django 反向访问器的外键冲突解决

    这篇文章主要介绍了python Django 反向访问器的外键冲突解决,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-05-05
  • Python MySQLdb 执行sql语句时的参数传递方式

    Python MySQLdb 执行sql语句时的参数传递方式

    这篇文章主要介绍了Python MySQLdb 执行sql语句时的参数传递方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-03-03
  • Python使用Socket实现简单聊天程序

    Python使用Socket实现简单聊天程序

    这篇文章主要介绍了Python使用Socket实现简单聊天程序,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-02-02
  • Python利用for循环打印星号三角形的案例

    Python利用for循环打印星号三角形的案例

    这篇文章主要介绍了Python利用for循环打印星号三角形的案例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-04-04
  • Python 命令行非阻塞输入的小例子

    Python 命令行非阻塞输入的小例子

    很久很久以前,系windows平台下,用C语言写过一款贪食蛇游戏,cmd界面,用kbhit()函数实现非阻塞输入。系windows平台下用python依然可以调用msvcrt.khbit实现非阻塞监听。但系喺linux下面就冇呢支歌仔唱
    2013-09-09
  • Django实现基于类的分页功能

    Django实现基于类的分页功能

    这篇文章主要为大家详细介绍了Django实现基于类的分页功能,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2019-10-10
  • Python批量解压文件中出现中文乱码的原因及解决方法

    Python批量解压文件中出现中文乱码的原因及解决方法

    这篇文章主要给大家记一次Python批量解压文件遇中文乱码及解决过程,文中有详细的图解及代码示例,具有一定的参考价值,需要的朋友可以参考下
    2023-08-08
  • Python数据分析之缺失值检测与处理详解

    Python数据分析之缺失值检测与处理详解

    在实际的数据处理中,缺失值是普遍存在的,如何使用 Python 检测和处理缺失值,就是本文要讲的主要内容。感兴趣的同学可以关注一下
    2021-12-12
  • 使用Python自制一个回收站清理器

    使用Python自制一个回收站清理器

    经常笔记本电脑的回收站存储了很多的文件,需要打开回收站全部选中进行清理。这篇文章将使用Python自制一个回收站清理器,需要的可以参考一下
    2023-03-03

最新评论